-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathimage_aug.py
175 lines (155 loc) · 5.13 KB
/
image_aug.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
#!/usr/bin/env python
# coding: utf-8
# Created on Mon Apr 11 16:55:39 2022
# @author: Lu Jian
# Email:[email protected];
from PIL import Image, ImageFilter, ImageEnhance
import numpy as np
from numpy.random import uniform,random,randint
np.random.seed(2022)
class RandomPad:
def __init__(self,LR=15,UL=15,w=0.5):
self.LR=LR
self.UL=UL
self.w=w
def __call__(self,img):
img_arr = np.array(img)
if random()>self.w:
upper= img_arr[:1,:,:]
img_arr = np.concatenate([np.tile(upper,(int(uniform()*self.UL),1,1)),img_arr],0)
if random()>self.w:
lower = img_arr[-1:,:,:]
img_arr = np.concatenate([img_arr,np.tile(lower,(int(uniform()*self.UL),1,1))],0)
if random()>self.w:
left = img_arr[:,:1,:]
img_arr = np.concatenate([np.tile(left,(1,int(uniform()*self.LR),1)),img_arr],1)
if random()>self.w:
right = img_arr[:,-1:,:]
img_arr = np.concatenate([img_arr,np.tile(right,(1,int(uniform()*self.LR),1))],1)
return Image.fromarray(img_arr)
class RandomCut:
def __init__(self, LR=14, UL=14, w=0.5):
self.LR=LR
self.UL=UL
self.w=w
def __call__(self, img_arr) :
img_arr = np.array(img_arr)
if random()>self.w:
img_arr =img_arr[:min(-1,-int(random()*self.UL)),:,:]
if random()>self.w:
img_arr =img_arr[int(random()*self.UL):,:,:]
if random()>self.w:
img_arr =img_arr[:,:min(-int(random()*self.LR),-1),:]
if random()>self.w:
img_arr =img_arr[:,int(random()*self.LR):,:]
return img_arr
class RandomMask:
def __init__(self,fill=0,space=(10,30),p=0.8):
self.fill=fill
self.space=space
self.p=p
def __call__(self,img_arr):
if random()<self.p:
img_arr= np.array(img_arr)
H=img_arr.shape[0]
h = randint(*self.space)
a = randint(0,high=H-h)
img_arr[a:a+h,a:a+h,:]=self.fill
return img_arr
class Bright:
def __init__(self, a=0.5,b=1.5):
self.a = a
self.b = b
def __call__(self, image):
Enhancer = ImageEnhance.Brightness(image)
return Enhancer.enhance(uniform(self.a,self.b))
class Contrast:
def __init__(self,a=0.3, b=1.3):
self.a = a
self.b = b
def __call__(self, image):
Enhancer = ImageEnhance.Contrast(image)
return Enhancer.enhance(uniform(self.a,self.b))
class Color:
def __init__(self,a=0.3, b=3):
self.a = a
self.b = b
def __call__(self, image):
Enhancer = ImageEnhance.Color(image)
return Enhancer.enhance(uniform(self.a,self.b))
class Sharpness:
def __init__(self,a=0, b=5):
self.a = a
self.b = b
def __call__(self, image):
Enhancer = ImageEnhance.Sharpness(image)
return Enhancer.enhance(uniform(self.a,self.b))
class GaussianBlur:
def __init__(self, p=1.5):
self.p = p
def __call__(self, image):
return image.filter(ImageFilter.GaussianBlur(uniform()*self.p))
class MinFilter:
def __init__(self, p=3):
self.p = p
def __call__(self, image):
return image.filter(ImageFilter.MinFilter(self.p))
class MaxFilter:
def __init__(self, p=3):
self.p = p
def __call__(self, image):
return image.filter(ImageFilter.MaxFilter(self.p))
class Rotate:
def __init__(self, p=6):
self.p=p
def __call__(self,image):
return image.rotate(uniform(-1,1)*self.p,fillcolor=(222,222,222))
class Resize:
def __init__(self, w=384,h=384):
self.w=w
self.h=h
def __call__(self,image):
return image.resize((self.w,self.h))
class Normalize:
def __init__(self, mean=0.5,std=0.5):
if not isinstance(mean,(tuple,list)):
mean=[mean]*3
std=[std]*3
self.mean=np.array([[[mean]]],'float32')
self.std=np.array([[[std]]],'float32')
def __call__(self,img_arr):
return (img_arr/255 - self.mean)/self.std
class image_process:
def __init__(self,size=384,aug = True):
self.resize=Resize(size,size)
self.normalize=Normalize()
self.aug_flag = aug
if self.aug_flag:
self.aug=(
(RandomPad(),0.8),
(RandomCut(),0.8),
(Bright(),0.3),
(Contrast(),0.3),
(Sharpness(),0.3),
(Color(),0.3),
(GaussianBlur(),0.5),
(MinFilter(),0.2),
(MaxFilter(),0.3),
(Rotate(),0.5),
)
self.rm=RandomMask()
def infer_process(self,img):
img=self.resize(img)
if self.aug_flag:
img=self.rm(img)
img_arr = np.array(img,'float32')
return img_arr
def aug_process(self,img):
for f,w in self.aug:
if random()<w:
img=f(img)
return img
def __call__(self,img):
if self.aug_flag :
img = self.aug_process(img)
return self.infer_process(img)