-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathrun_translation.py
786 lines (707 loc) · 33.2 KB
/
run_translation.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
"""
Fine-tuning hugginface models for seq2seq. Based on https://github.com/huggingface/transformers/tree/e54a1b49aa6268c484625c6374f952f318914743/examples/pytorch/translation.
Modified to support monolingual machine translation (e.g., summarization, simplification).
"""
import json
import logging
import os
import re
import sys
from dataclasses import dataclass, field
from typing import List, Optional
import datasets
import nltk
import numpy as np
import transformers
from datasets import load_dataset
from transformers import (
AutoConfig,
AutoModelForSeq2SeqLM,
AutoTokenizer,
DataCollatorForSeq2Seq,
EarlyStoppingCallback,
EncoderDecoderModel,
HfArgumentParser,
M2M100Tokenizer,
MBart50Tokenizer,
MBart50TokenizerFast,
MBartTokenizer,
MBartTokenizerFast,
Seq2SeqTrainingArguments,
default_data_collator,
set_seed,
)
from transformers.integrations import rewrite_logs
from transformers.trainer_utils import get_last_checkpoint
from .evaluate import calculate_bleu, calculate_rouge, calculate_sari
from .trainer import Trainer
logger = logging.getLogger(__name__)
# A list of all multilingual tokenizer which require src_lang and tgt_lang attributes.
MULTILINGUAL_TOKENIZERS = [MBartTokenizer, MBartTokenizerFast, MBart50Tokenizer, MBart50TokenizerFast, M2M100Tokenizer]
@dataclass
class ModelArguments:
"""
Arguments pertaining to which model/config/tokenizer we are going to fine-tune from.
"""
model_name_or_path: str = field(
metadata={"help": "Path to pretrained model or model identifier from huggingface.co/models"}
)
config_name: Optional[str] = field(
default=None, metadata={"help": "Pretrained config name or path if not the same as model_name"}
)
tokenizer_name: Optional[str] = field(
default=None, metadata={"help": "Pretrained tokenizer name or path if not the same as model_name"}
)
use_custom_mbart_tokenizer: Optional[bool] = field(
default=False, metadata={"help": "If True, use an MBart tokenizer with support for additional language tags."}
)
cache_dir: Optional[str] = field(
default=None,
metadata={"help": "Where to store the pretrained models downloaded from huggingface.co"},
)
use_fast_tokenizer: bool = field(
default=True,
metadata={"help": "Whether to use one of the fast tokenizer (backed by the tokenizers library) or not."},
)
model_revision: str = field(
default="main",
metadata={"help": "The specific model version to use (can be a branch name, tag name or commit id)."},
)
use_auth_token: bool = field(
default=False,
metadata={
"help": (
"Will use the token generated when running `transformers-cli login` (necessary to use this script "
"with private models)."
)
},
)
bert2bert: Optional[bool] = field(
default=False,
metadata={
"help": "Train an EncoderDecoderModel where both encoder and decoder are initialized with BERT embeddings. Use `model_name_or_path` to specify the BERT checkpoint that should be used."
},
)
tie_encoder_decoder: Optional[bool] = field(
default=False, metadata={"help": "Whether to share weights between encoder and decoder (only for BERT2BERT)."}
)
bad_words: Optional[List[str]] = field(
default=None, metadata={"help": "List of tokens that are not allowed to be generated."}
)
@dataclass
class DataTrainingArguments:
"""
Arguments pertaining to what data we are going to input our model for training and eval.
"""
source_lang: str = field(default=None, metadata={"help": "Source language id for translation."})
target_lang: str = field(default=None, metadata={"help": "Target language id for translation."})
dataset_name: Optional[str] = field(
default=None, metadata={"help": "The name of the dataset to use (via the datasets library)."}
)
dataset_config_name: Optional[str] = field(
default=None, metadata={"help": "The configuration name of the dataset to use (via the datasets library)."}
)
train_file: Optional[str] = field(default=None, metadata={"help": "The input training data file (a jsonlines)."})
validation_file: Optional[str] = field(
default=None,
metadata={
"help": "An optional input evaluation data file to evaluate the metrics (sacreblue) on a jsonlines file."
},
)
test_file: Optional[str] = field(
default=None,
metadata={"help": "An optional input test data file to evaluate the metrics (sacreblue) on a jsonlines file."},
)
overwrite_cache: bool = field(
default=False, metadata={"help": "Overwrite the cached training and evaluation sets"}
)
preprocessing_num_workers: Optional[int] = field(
default=None,
metadata={"help": "The number of processes to use for the preprocessing."},
)
max_source_length: Optional[int] = field(
default=1024,
metadata={
"help": (
"The maximum total input sequence length after tokenization. Sequences longer "
"than this will be truncated, sequences shorter will be padded."
)
},
)
max_target_length: Optional[int] = field(
default=128,
metadata={
"help": (
"The maximum total sequence length for target text after tokenization. Sequences longer "
"than this will be truncated, sequences shorter will be padded."
)
},
)
val_max_target_length: Optional[int] = field(
default=None,
metadata={
"help": (
"The maximum total sequence length for validation target text after tokenization. Sequences longer "
"than this will be truncated, sequences shorter will be padded. Will default to `max_target_length`."
"This argument is also used to override the ``max_length`` param of ``model.generate``, which is used "
"during ``evaluate`` and ``predict``."
)
},
)
pad_to_max_length: bool = field(
default=False,
metadata={
"help": (
"Whether to pad all samples to model maximum sentence length. "
"If False, will pad the samples dynamically when batching to the maximum length in the batch. More "
"efficient on GPU but very bad for TPU."
)
},
)
max_train_samples: Optional[int] = field(
default=None,
metadata={
"help": (
"For debugging purposes or quicker training, truncate the number of training examples to this "
"value if set."
)
},
)
max_eval_samples: Optional[int] = field(
default=None,
metadata={
"help": (
"For debugging purposes or quicker training, truncate the number of evaluation examples to this "
"value if set."
)
},
)
max_predict_samples: Optional[int] = field(
default=None,
metadata={
"help": (
"For debugging purposes or quicker training, truncate the number of prediction examples to this "
"value if set."
)
},
)
num_beams: Optional[int] = field(
default=None,
metadata={
"help": (
"Number of beams to use for evaluation. This argument will be passed to ``model.generate``, "
"which is used during ``evaluate`` and ``predict``."
)
},
)
ignore_pad_token_for_loss: bool = field(
default=True,
metadata={
"help": "Whether to ignore the tokens corresponding to padded labels in the loss computation or not."
},
)
source_prefix: Optional[str] = field(
default=None, metadata={"help": "A prefix to add before every source text (useful for T5 models)."}
)
forced_bos_token: Optional[str] = field(
default=None,
metadata={
"help": (
"The token to force as the first generated token after the :obj:`decoder_start_token_id`.Useful for"
" multilingual models like :doc:`mBART <../model_doc/mbart>` where the first generated token needs to"
" be the target language token.(Usually it is the target language token)"
)
},
)
additional_tokenization_cleanup: Optional[str] = field(
default=False,
metadata={
"help": "Analogous to `clean_up_tokenization_spaces` of PretrainedTokenizer.decode, but with additional coverage of punctuation and English abbreviations."
},
)
def __post_init__(self):
if self.dataset_name is None and self.train_file is None and self.validation_file is None:
raise ValueError("Need either a dataset name or a training/validation file.")
elif self.source_lang is None or self.target_lang is None:
raise ValueError("Need to specify the source language and the target language.")
# accepting both json and jsonl file extensions, as
# many jsonlines files actually have a .json extension
valid_extensions = ["json", "jsonl"]
if self.train_file is not None:
extension = self.train_file.split(".")[-1]
assert extension in valid_extensions, "`train_file` should be a jsonlines file."
if self.validation_file is not None:
extension = self.validation_file.split(".")[-1]
assert extension in valid_extensions, "`validation_file` should be a jsonlines file."
if self.val_max_target_length is None:
self.val_max_target_length = self.max_target_length
@dataclass
class TrainingArguments(Seq2SeqTrainingArguments):
early_stopping_patience: Optional[int] = field(
default=None,
metadata={
"help": (
"Use with `metric_for_best_model` to stop training when the specified metric worsens for `early_stopping_patience` evaluation calls."
)
},
)
early_stopping_threshold: Optional[float] = field(
default=None,
metadata={
"help": (
"Use with TrainingArguments `metric_for_best_model` and `early_stopping_patience` to denote how much the specified metric must improve to satisfy early stopping conditions."
)
},
)
generation_method: Optional[str] = field(
default="beam", metadata={"help": "Decoding method. Choices = [greedy,beam,nucleus]."}
)
generation_top_p: Optional[float] = field(
default=1.0,
metadata={
"help": "If set to float < 1, only the most probable tokens with probabilities that add up to top_p or higher are kept for generation."
},
)
dropout: Optional[float] = field(
default=None,
metadata={
"help": "The dropout probability for all fully connected layers in the embeddings, encoder, and pooler."
},
)
attention_dropout: Optional[float] = field(
default=None, metadata={"help": "The dropout ratio for the attention probabilities."}
)
group_name: Optional[str] = field(default=None, metadata={"help": "Group name to use with wandb logging."})
wandb_id: Optional[str] = field(
default=None,
metadata={"help": "Log additional results for an existing wandb run with the specified ID."},
)
def __post_init__(self):
super().__post_init__()
if self.predict_with_generate:
# We need the inputs to compute metrics like SARI.
self.include_inputs_for_metrics = True
class CustomMBartTokenizer(MBartTokenizer):
def set_src_lang_special_tokens(self, src_lang) -> None:
"""Reset the special tokens to the source lang setting. No prefix and suffix=[eos, src_lang_code]."""
self.cur_lang_code = self.get_vocab()[src_lang]
self.prefix_tokens = []
self.suffix_tokens = [self.eos_token_id, self.cur_lang_code]
def set_tgt_lang_special_tokens(self, lang: str) -> None:
"""Reset the special tokens to the target language setting. No prefix and suffix=[eos, tgt_lang_code]."""
self.cur_lang_code = self.get_vocab()[lang]
self.prefix_tokens = []
self.suffix_tokens = [self.eos_token_id, self.cur_lang_code]
def add_newline_to_end_of_each_sentence(x: str) -> str:
"""This was added to get rougeLsum scores matching published rougeL scores for BART and PEGASUS."""
re.sub("<n>", "", x) # remove pegasus newline char
return "\n".join(nltk.sent_tokenize(x))
def additional_tokenization_cleanup(s: str) -> str:
s = (
s.replace(" - ", "-")
.replace("( ", "(")
.replace(" )", ")")
.replace(" %", "%")
.replace(" ;", ";")
.replace(" :", ":")
.replace(" / ", "/")
.replace("e. g.", "e.g.")
.replace("i. e.", "i.e.")
)
s = re.sub("(\d), (\d)", r"\1,\2", s) # German decimals "4, 5 => 4,5"
return s
def main():
parser = HfArgumentParser((ModelArguments, DataTrainingArguments, TrainingArguments))
if len(sys.argv) == 2 and sys.argv[1].endswith(".json"):
# If we pass only one argument to the script and it's the path to a json file,
# let's parse it to get our arguments.
model_args, data_args, training_args = parser.parse_json_file(json_file=os.path.abspath(sys.argv[1]))
else:
model_args, data_args, training_args = parser.parse_args_into_dataclasses()
_wandb = None
if "wandb" in training_args.report_to:
# Initialize wandb already before the trainer to capture full execution log.
import wandb
wandb.init(id=training_args.wandb_id, group=training_args.group_name, name=training_args.run_name)
_wandb = wandb
# Setup logging
logging.basicConfig(
format="%(asctime)s - %(levelname)s - %(name)s - %(message)s",
datefmt="%m/%d/%Y %H:%M:%S",
handlers=[logging.StreamHandler(sys.stdout)],
)
log_level = training_args.get_process_log_level()
logger.setLevel(log_level)
datasets.utils.logging.set_verbosity(log_level)
transformers.utils.logging.set_verbosity(log_level)
transformers.utils.logging.enable_default_handler()
transformers.utils.logging.enable_explicit_format()
# Log on each process the small summary:
logger.warning(
f"Process rank: {training_args.local_rank}, device: {training_args.device}, n_gpu: {training_args.n_gpu}"
+ f"distributed training: {bool(training_args.local_rank != -1)}, 16-bits training: {training_args.fp16}"
)
logger.info(f"Training/evaluation parameters {training_args}")
if data_args.source_prefix is None and model_args.model_name_or_path in [
"t5-small",
"t5-base",
"t5-large",
"t5-3b",
"t5-11b",
]:
logger.warning(
"You're running a t5 model but didn't provide a source prefix, which is expected, e.g. with "
"`--source_prefix 'translate English to German: ' `"
)
# Detecting last checkpoint.
last_checkpoint = None
if os.path.isdir(training_args.output_dir) and training_args.do_train and not training_args.overwrite_output_dir:
last_checkpoint = get_last_checkpoint(training_args.output_dir)
if last_checkpoint is None and len(os.listdir(training_args.output_dir)) > 0:
raise ValueError(
f"Output directory ({training_args.output_dir}) already exists and is not empty. "
"Use --overwrite_output_dir to overcome."
)
elif last_checkpoint is not None and training_args.resume_from_checkpoint is None:
logger.info(
f"Checkpoint detected, resuming training at {last_checkpoint}. To avoid this behavior, change "
"the `--output_dir` or add `--overwrite_output_dir` to train from scratch."
)
# Set seed before initializing model.
set_seed(training_args.seed)
if data_args.dataset_name is not None:
# Downloading and loading a dataset from the hub.
raw_datasets = load_dataset(
data_args.dataset_name,
data_args.dataset_config_name,
cache_dir=model_args.cache_dir,
use_auth_token=True if model_args.use_auth_token else None,
)
else:
data_files = {}
if data_args.train_file is not None:
data_files["train"] = data_args.train_file
extension = data_args.train_file.split(".")[-1]
if data_args.validation_file is not None:
data_files["validation"] = data_args.validation_file
extension = data_args.validation_file.split(".")[-1]
if data_args.test_file is not None:
data_files["test"] = data_args.test_file
extension = data_args.test_file.split(".")[-1]
raw_datasets = load_dataset(
extension,
data_files=data_files,
cache_dir=model_args.cache_dir,
use_auth_token=True if model_args.use_auth_token else None,
)
if model_args.bert2bert:
# For BERT2BERT training, we need to configure an EncoderDecoder model.
# After training, the config/tokenizer/model can be loaded as usual with the Auto* classes in the next block.
#
# Based on:
# https://colab.research.google.com/drive/1Ekd5pUeCX7VOrMx94_czTkwNtLN32Uyu?usp=sharing#scrollTo=JD2jv3GkyjR-
tokenizer = AutoTokenizer.from_pretrained(
model_args.model_name_or_path,
cache_dir=model_args.cache_dir,
use_fast=model_args.use_fast_tokenizer,
revision=model_args.model_revision,
use_auth_token=True if model_args.use_auth_token else None,
)
tokenizer.bos_token = tokenizer.cls_token
tokenizer.eos_token = tokenizer.sep_token
model = EncoderDecoderModel.from_encoder_decoder_pretrained(
model_args.model_name_or_path,
model_args.model_name_or_path,
tie_encoder_decoder=model_args.tie_encoder_decoder,
from_tf=bool(".ckpt" in model_args.model_name_or_path),
cache_dir=model_args.cache_dir,
revision=model_args.model_revision,
use_auth_token=True if model_args.use_auth_token else None,
)
model.config.decoder_start_token_id = tokenizer.bos_token_id
model.config.eos_token_id = tokenizer.eos_token_id
model.config.pad_token_id = tokenizer.pad_token_id
model.config.vocab_size = model.config.decoder.vocab_size
else:
custom_args = {}
if training_args.dropout is not None:
custom_args["dropout"] = training_args.dropout
if training_args.attention_dropout is not None:
custom_args["attention_dropout"] = training_args.attention_dropout
config = AutoConfig.from_pretrained(
model_args.config_name if model_args.config_name else model_args.model_name_or_path,
cache_dir=model_args.cache_dir,
revision=model_args.model_revision,
use_auth_token=True if model_args.use_auth_token else None,
**custom_args,
)
if model_args.use_custom_mbart_tokenizer:
tokenizer_cls = CustomMBartTokenizer
else:
tokenizer_cls = AutoTokenizer
tokenizer = tokenizer_cls.from_pretrained(
model_args.tokenizer_name if model_args.tokenizer_name else model_args.model_name_or_path,
cache_dir=model_args.cache_dir,
use_fast=model_args.use_fast_tokenizer,
revision=model_args.model_revision,
use_auth_token=True if model_args.use_auth_token else None,
)
model = AutoModelForSeq2SeqLM.from_pretrained(
model_args.model_name_or_path,
from_tf=bool(".ckpt" in model_args.model_name_or_path),
config=config,
cache_dir=model_args.cache_dir,
revision=model_args.model_revision,
use_auth_token=True if model_args.use_auth_token else None,
)
try:
# For BART2BART
model.encoder.resize_token_embeddings(len(tokenizer))
model.decoder.resize_token_embeddings(len(tokenizer))
except AttributeError:
model.resize_token_embeddings(len(tokenizer))
# Set decoder_start_token_id
if model.config.decoder_start_token_id is None and isinstance(tokenizer, (MBartTokenizer, MBartTokenizerFast)):
if isinstance(tokenizer, MBartTokenizer):
model.config.decoder_start_token_id = tokenizer.get_vocab()[data_args.target_lang]
else:
model.config.decoder_start_token_id = tokenizer.convert_tokens_to_ids(data_args.target_lang)
if model.config.decoder_start_token_id is None:
raise ValueError("Make sure that `config.decoder_start_token_id` is correctly defined")
if model_args.bad_words is not None:
bad_words_ids = [tokenizer.vocab[token] for token in model_args.bad_words]
model.config.bad_words_ids = [bad_words_ids]
prefix = data_args.source_prefix if data_args.source_prefix is not None else ""
# Preprocessing the datasets.
# We need to tokenize inputs and targets.
if training_args.do_train:
column_names = raw_datasets["train"].column_names
elif training_args.do_eval:
column_names = raw_datasets["validation"].column_names
elif training_args.do_predict:
column_names = raw_datasets["test"].column_names
else:
logger.info("There is nothing to do. Please pass `do_train`, `do_eval` and/or `do_predict`.")
return
# For translation we set the codes of our source and target languages.
# Only useful for mBART, the others will ignore those attributes.
if isinstance(tokenizer, tuple(MULTILINGUAL_TOKENIZERS)):
assert data_args.target_lang is not None and data_args.source_lang is not None, (
f"{tokenizer.__class__.__name__} is a multilingual tokenizer which requires --source_lang and "
"--target_lang arguments."
)
tokenizer.src_lang = data_args.source_lang
tokenizer.tgt_lang = data_args.target_lang
# For multilingual translation models like mBART-50 and M2M100 we need to force the target language token
# as the first generated token. We ask the user to explicitly provide this as --forced_bos_token argument.
forced_bos_token_id = (
tokenizer.get_vocab()[data_args.forced_bos_token] if data_args.forced_bos_token is not None else None
)
model.config.forced_bos_token_id = forced_bos_token_id
# Temporarily set max_target_length for training.
max_target_length = data_args.max_target_length
padding = "max_length" if data_args.pad_to_max_length else False
if training_args.label_smoothing_factor > 0 and not hasattr(model, "prepare_decoder_input_ids_from_labels"):
logger.warning(
"label_smoothing is enabled but the `prepare_decoder_input_ids_from_labels` method is not defined for"
f"`{model.__class__.__name__}`. This will lead to loss being calculated twice and will take up more memory"
)
def preprocess_function(examples):
inputs = examples["source"]
targets = examples["target"]
inputs = [prefix + inp for inp in inputs]
model_inputs = tokenizer(inputs, max_length=data_args.max_source_length, padding=padding, truncation=True)
# Setup the tokenizer for targets
with tokenizer.as_target_tokenizer():
labels = tokenizer(targets, max_length=max_target_length, padding=padding, truncation=True)
# If we are padding here, replace all tokenizer.pad_token_id in the labels by -100 when we want to ignore
# padding in the loss.
if padding == "max_length" and data_args.ignore_pad_token_for_loss:
labels["input_ids"] = [
[(l if l != tokenizer.pad_token_id else -100) for l in label] for label in labels["input_ids"]
]
model_inputs["labels"] = labels["input_ids"]
return model_inputs
if training_args.do_train:
if "train" not in raw_datasets:
raise ValueError("--do_train requires a train dataset")
train_dataset = raw_datasets["train"]
if data_args.max_train_samples is not None:
max_train_samples = min(len(train_dataset), data_args.max_train_samples)
train_dataset = train_dataset.select(range(max_train_samples))
with training_args.main_process_first(desc="train dataset map pre-processing"):
train_dataset = train_dataset.map(
preprocess_function,
batched=True,
num_proc=data_args.preprocessing_num_workers,
remove_columns=column_names,
load_from_cache_file=not data_args.overwrite_cache,
desc="Running tokenizer on train dataset",
)
sample_file = os.path.join(training_args.output_dir, "batch_sample.json")
with open(sample_file, "w") as fout:
d = dict(train_dataset[0])
d["input_tokens"] = tokenizer.decode(d["input_ids"])
d["labels_tokens"] = tokenizer.decode(d["labels"])
json.dump(d, fout)
if training_args.do_eval:
max_target_length = data_args.val_max_target_length
if "validation" not in raw_datasets:
raise ValueError("--do_eval requires a validation dataset")
eval_dataset = raw_datasets["validation"]
if data_args.max_eval_samples is not None:
max_eval_samples = min(len(eval_dataset), data_args.max_eval_samples)
eval_dataset = eval_dataset.select(range(max_eval_samples))
with training_args.main_process_first(desc="validation dataset map pre-processing"):
eval_dataset = eval_dataset.map(
preprocess_function,
batched=True,
num_proc=data_args.preprocessing_num_workers,
remove_columns=column_names,
load_from_cache_file=not data_args.overwrite_cache,
desc="Running tokenizer on validation dataset",
)
if training_args.do_predict:
max_target_length = data_args.val_max_target_length
if "test" not in raw_datasets:
raise ValueError("--do_predict requires a test dataset")
predict_dataset = raw_datasets["test"]
if data_args.max_predict_samples is not None:
max_predict_samples = min(len(predict_dataset), data_args.max_predict_samples)
predict_dataset = predict_dataset.select(range(max_predict_samples))
with training_args.main_process_first(desc="prediction dataset map pre-processing"):
predict_dataset = predict_dataset.map(
preprocess_function,
batched=True,
num_proc=data_args.preprocessing_num_workers,
remove_columns=column_names,
load_from_cache_file=not data_args.overwrite_cache,
desc="Running tokenizer on prediction dataset",
)
label_pad_token_id = -100 if data_args.ignore_pad_token_for_loss else tokenizer.pad_token_id
if data_args.pad_to_max_length:
data_collator = default_data_collator
else:
data_collator = DataCollatorForSeq2Seq(
tokenizer,
model=model,
label_pad_token_id=label_pad_token_id,
pad_to_multiple_of=8 if training_args.fp16 else None,
)
def compute_metrics(eval_preds):
preds, labels, inputs = eval_preds
if isinstance(preds, tuple):
preds = preds[0]
decoded_preds = tokenizer.batch_decode(preds, skip_special_tokens=True)
if data_args.ignore_pad_token_for_loss:
# Replace -100 in the labels and inputs as we can't decode them.
labels = np.where(labels != -100, labels, tokenizer.pad_token_id)
inputs = np.where(inputs != -100, inputs, tokenizer.pad_token_id)
decoded_labels = tokenizer.batch_decode(labels, skip_special_tokens=True)
decoded_inputs = tokenizer.batch_decode(inputs, skip_special_tokens=True)
result = calculate_rouge(decoded_preds, decoded_labels)
result["bleu"] = calculate_bleu(decoded_preds, decoded_labels)
result["sari"] = calculate_sari(decoded_inputs, decoded_preds, decoded_labels)
prediction_lens = [np.count_nonzero(pred != tokenizer.pad_token_id) for pred in preds]
result["gen_len"] = np.mean(prediction_lens)
result = {k: round(v, 4) for k, v in result.items()}
return result
callbacks = []
if training_args.early_stopping_patience:
early_stopping = EarlyStoppingCallback(
early_stopping_patience=training_args.early_stopping_patience,
early_stopping_threshold=training_args.early_stopping_threshold,
)
callbacks.append(early_stopping)
assert (
training_args.load_best_model_at_end
), "load_best_model_at_end must be set to True if using early stopping"
trainer = Trainer(
model=model,
args=training_args,
train_dataset=train_dataset if training_args.do_train else None,
eval_dataset=eval_dataset if training_args.do_eval else None,
tokenizer=tokenizer,
data_collator=data_collator,
compute_metrics=compute_metrics if training_args.predict_with_generate else None,
callbacks=callbacks,
)
if training_args.do_train:
checkpoint = None
if training_args.resume_from_checkpoint is not None:
checkpoint = training_args.resume_from_checkpoint
elif last_checkpoint is not None:
checkpoint = last_checkpoint
train_result = trainer.train(resume_from_checkpoint=checkpoint)
trainer.save_model() # Saves the tokenizer too for easy upload
metrics = train_result.metrics
max_train_samples = (
data_args.max_train_samples if data_args.max_train_samples is not None else len(train_dataset)
)
metrics["train_samples"] = min(max_train_samples, len(train_dataset))
trainer.log_metrics("train", metrics)
trainer.save_metrics("train", metrics)
trainer.save_state()
max_length = (
training_args.generation_max_length
if training_args.generation_max_length is not None
else data_args.val_max_target_length
)
num_beams = data_args.num_beams if data_args.num_beams is not None else training_args.generation_num_beams
# `predict_with_generate` enables generation for all three Trainer loops (train, evaluate, predict).
# We would like to *always* use generation during evaluation, and only use it during training if
# `predict_with_generate` is set to true. As there seems to be no configuration option to allow this, we forcefully
# enable it after training completed.
trainer.args.predict_with_generate = True
trainer.args.include_inputs_for_metrics = True
trainer.compute_metrics = compute_metrics
def predict(dataset, prefix, output_prediction_file):
"""Runs inference for the given dataset. Also calculates metrics if the dataset has labels."""
predict_results = trainer.predict(
dataset, metric_key_prefix=prefix, max_length=max_length, num_beams=num_beams
)
metrics = predict_results.metrics
metrics[f"{prefix}_samples"] = len(dataset)
trainer.log_metrics(prefix, metrics)
trainer.save_metrics(prefix, metrics)
if trainer.is_world_process_zero():
if _wandb:
_wandb.log(rewrite_logs(metrics))
if training_args.predict_with_generate:
predictions = tokenizer.batch_decode(
predict_results.predictions, skip_special_tokens=True, clean_up_tokenization_spaces=True
)
# Post-process predictions
predictions = [pred.strip() for pred in predictions]
if data_args.additional_tokenization_cleanup:
predictions = (additional_tokenization_cleanup(p) for p in predictions)
with open(output_prediction_file, "w", encoding="utf-8") as writer:
writer.write("\n".join(predictions))
if training_args.do_eval:
logger.info("*** Evaluate ***")
predict(
dataset=eval_dataset,
prefix="eval",
output_prediction_file=os.path.join(training_args.output_dir, "predictions_eval.txt"),
)
if training_args.do_predict:
logger.info("*** Predict ***")
predict(
dataset=predict_dataset,
prefix="test",
output_prediction_file=os.path.join(training_args.output_dir, "predictions_test.txt"),
)
kwargs = {"finetuned_from": model_args.model_name_or_path, "tasks": "translation"}
if data_args.dataset_name is not None:
kwargs["dataset_tags"] = data_args.dataset_name
if data_args.dataset_config_name is not None:
kwargs["dataset_args"] = data_args.dataset_config_name
kwargs["dataset"] = f"{data_args.dataset_name} {data_args.dataset_config_name}"
else:
kwargs["dataset"] = data_args.dataset_name
languages = [l for l in [data_args.source_lang, data_args.target_lang] if l is not None]
if len(languages) > 0:
kwargs["language"] = languages
trainer.create_model_card(**kwargs)
if __name__ == "__main__":
main()