-
Notifications
You must be signed in to change notification settings - Fork 1
/
Copy pathcompose_llm.py
62 lines (41 loc) · 1.32 KB
/
compose_llm.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
"""
@author jasperan
This script retrieves messages from a SQLite3 database and creates a set of question-answer prompts
(message n + message n-1).
"""
import sqlite3
import pandas as pd
import ujson as json
# Connect to the database
conn = sqlite3.connect('messages.db')
def db_to_csv(conn):
# Read table from sqlite database
df = pd.read_sql_query('SELECT * FROM messages', conn)
# Remove duplicates
df.drop_duplicates(inplace=True)
# Remove empty messages
df = df[df['content'] != '']
# dataset is already in order, the more messages we store in messages.db, the better.
print(df.tail())
pd.set_option('display.max_columns', None)
print(len(df))
df.to_csv('messages.csv', index=True)
return df
def json_format(df):
result = list()
for index, row in df.iterrows():
try:
response = df.iloc[index]['content']
question = df.iloc[index-1]['content']
desired_format = {"question": question, "response": response}
result.append(desired_format)
except IndexError:
continue
return result
def write_to_json_file(data, filename):
with open(filename, 'w') as outfile:
json.dump(data, outfile)
df = db_to_csv(conn)
result = json_format(df)
print(result)
write_to_json_file(result, 'output.json')