-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathbase_station.py
547 lines (504 loc) · 30.4 KB
/
base_station.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
import math
import numpy
from helpers.random_helpers import random_number
from helpers.carrier import Carrier
from helpers.bandwidth_part import BandwidthPart
from channels.channel import Channel
from channels.cch import CCH
from channels.rach import RACH
from channels.agch import AGCH
from channels.psch import PSCH
class BaseStation:
def __init__(self, x, y, z, base_id, frequency_band, initial_frequency, final_frequency, subcarrier_spacing, mimo,
power, antenna_gain, noise_spectral_density, step_simulation_time):
# Position (km)
self.x = x
self.y = y
self.z = z
# Base Station id
self.base_id = base_id
# Power
self.power = power
self.power_per_subcarrier = None # Calculated in configuration
# Frequency (MHz)
self.initial_frequency = initial_frequency
self.final_frequency = final_frequency
self.bandwidth = self.final_frequency - self.initial_frequency
self.subcarrier_spacing = subcarrier_spacing
self.n_subcarriers_per_carrier = None
self.duplex = frequency_band.get_duplex()
# MIMO Na x Nl
self.mimo = mimo
# Resource Grid
self.is_configured = False # Checks if the configuration() function have been executed
self.carrier_grid = []
# Time reference for the scheduler
self.step_simulation_time = step_simulation_time
# Beacon carrier
self.n_CCH = 1 # Number of CCH Channel
self.n_RACH_and_AGCH = 2 # Number of RACH and AGCH Channel
# Connected mobiles
self.connected_mobiles = []
self.bandwidth_parts = [] # Bandwidth Parts of each user
#
self.max_allowed_REs = numpy.nan # Only if carrier load is more than 80%
#
self.carrier_load = None
#
self.allowed_change_of_resources = True
# Save info
self.save = False
self.info = []
def get_x(self):
return self.x
def get_y(self):
return self.y
def get_z(self):
return self.z
def get_base_id(self):
return self.base_id
def get_power(self):
return self.power
def get_power_per_subcarrier(self):
return self.power_per_subcarrier
def get_initial_frequency(self):
return self.initial_frequency
def get_final_frequency(self):
return self.final_frequency
def get_bandwidth(self):
return self.bandwidth
def get_subcarrier_spacing(self):
return self.subcarrier_spacing
def get_duplex(self):
return self.duplex
def get_mimo(self):
return self.mimo
def get_carrier_grid(self):
return self.carrier_grid
def set_carrier_grid(self, channel, carrier, resource, subframe):
self.carrier_grid[carrier].set_resource_grid(resource, subframe, channel)
def configuration(self):
# TODO: Improve the configuration
# In beacon carrier the subcarrier spacing numerology is 15 kHz and 30 KHz for FR1 -> PSS,SSS,PBCH
# In beacon carrier the subcarrier spacing numerology is 60 kHz and 120 KHz for FR1 -> PSS,SSS,PBCH
beacon_carrier = self.initial_frequency # Initial frequency of Beacon carrier (baliza)
subcarrier_spacing = self.subcarrier_spacing # f(MHz) TODO: Add if-statement because if the subcarrier spacing changes, the slots change as well
n_symbols_per_slot = 14 # 15 kHz (14 OFDM symbols)
n_slots_per_subframe = 1 # 15 kHz (14 OFDM symbols)
n_subframes_per_frame = 10 # Every 10 ms
n_symbols_per_subframe = n_symbols_per_slot * n_slots_per_subframe # Every 1 ms
n_slots_per_frame = n_slots_per_subframe * n_subframes_per_frame # Every 10 ms
n_symbols_per_frame = n_symbols_per_subframe * n_subframes_per_frame # Every 10 ms
resource_block = 12 # RB = 12 subcarriers
max_resources = 275 # Max Resources = 275 RB / carrier - It changes depending on the subcarrier spacing
n_subcarriers_per_carrier = max_resources * resource_block # Subcarriers per carrier
self.n_subcarriers_per_carrier = n_subcarriers_per_carrier
self.power_per_subcarrier = self.power / self.n_subcarriers_per_carrier
carrier_bandwidth = n_subcarriers_per_carrier * subcarrier_spacing
n_carriers = math.floor(self.bandwidth / carrier_bandwidth)
# Creating the resource grid (Only if this function is executed for the first time)
if not self.is_configured:
self.carrier_grid = [
Carrier(self.initial_frequency + c * carrier_bandwidth, carrier_bandwidth, subcarrier_spacing,
max_resources, [[None for s in range(n_subframes_per_frame)] for r in range(max_resources)]) for
c in range(n_carriers)]
# Resource Blocks for each channel TODO: Add them to CONSTANTs
CCH_RB = 20
CCH_subframes = 10
RACH_RB = 12
RACH_subframes = 5
AGCH_RB = 12
AGCH_subframes = 5
# Adding common control channels (CCH) to the resource grid (PSS,SSS,PBCH) -> Every 5 ms
# TODO: The minimum resource can be 1 slot (14 OFDM symbols) or Mini-slot (7,4 or 2 OFDM symbols) - The slot can be all downlink, all uplink or mixed - Slot aggregation is supported to span multiple slots
for RB in range(0,
self.n_CCH * CCH_RB): # This control signals occupy 20 RB and 10 subframes (assumption in the occupied subframes)
for s in range(0, CCH_subframes): # Frame (10 Subframes (10 ms))
self.carrier_grid[0].set_resource_grid(RB, s, Channel(
CCH(self.base_id, beacon_carrier, self.duplex, self.n_CCH * CCH_RB,
self.n_CCH * CCH_RB + self.n_RACH_and_AGCH * RACH_RB, self.n_RACH_and_AGCH), "CCH"))
# Adding RACH and AGCH channels
# Supposition: RACH and AGCH resources always in beacon carrier
# Supposition: Half of the resources are for each of the channels
for RB in range(self.n_CCH * CCH_RB,
self.n_CCH * CCH_RB + self.n_RACH_and_AGCH * RACH_RB): # This control signals occupy 12 RB and 5 subframes (assumption in the occupied subframes)
for s in range(0, RACH_subframes): # Frame (5 Subframes (5 ms))
self.carrier_grid[0].set_resource_grid(RB, s, Channel(RACH([], [], [], [], [], [], []), "RACH"))
for RB in range(self.n_CCH * CCH_RB,
self.n_CCH * CCH_RB + self.n_RACH_and_AGCH * AGCH_RB): # This control signals occupy 12 RB and 5 subframes (assumption in the occupied subframes)
for s in range(RACH_subframes, RACH_subframes + AGCH_subframes): # Frame (5 Subframes (5 ms))
self.carrier_grid[0].set_resource_grid(RB, s, Channel(AGCH(), "AGCH"))
# Creating the PSCH (Only if this function is executed for the first time)
if not self.is_configured:
self.is_configured = True
# Adding PSCH: PUSCH, PDSCH (Downlink Information, Control Signal {PUCCH, PDCCH})
for RB in range(self.n_CCH * CCH_RB + self.n_RACH_and_AGCH * RACH_RB, max_resources, 1):
for s in range(0, 10, 1): # (5 Even Subframes (5 ms))
self.carrier_grid[0].set_resource_grid(RB, s, Channel(PSCH(self.mimo),
"PSCH")) # TODO: Unique Carrier (Beacon carrier) we have to add for more carriers
# Every symbol
def scheduler(self, subframe):
# Read RACH -> If there is one request: answer it in AGCH channel and give resources | If there is two requests: ignore it
carrier = 0 # Assumption: The RACH Channel is always is in the beacon carrier
carrier_resources = self.carrier_grid[carrier].get_resource_grid()
for r in range(20, 20 + 12 * self.n_RACH_and_AGCH, 12):
if carrier_resources[r][subframe].get_channel_type() == "RACH":
mobiles = carrier_resources[r][
subframe].get_channel().get_mobiles() # Get mobiles accessing to that RACH
if (len(mobiles) == 1) and (not (mobiles[0] in self.connected_mobiles)):
mobile = mobiles[0]
mimo_quadrant = carrier_resources[r][subframe].get_channel().get_mimo_quadrant()[0]
uplink_modulation = carrier_resources[r][subframe].get_channel().get_uplink_modulation()[0]
downlink_modulation = carrier_resources[r][subframe].get_channel().get_downlink_modulation()[0]
uplink_datarate_needed = carrier_resources[r][subframe].get_channel().get_uplink_datarate_needed()[0]
downlink_datarate_needed = carrier_resources[r][subframe].get_channel().get_downlink_datarate_needed()[0]
latency = carrier_resources[r][subframe].get_channel().get_latency()[0]
T_sym = 1 / (self.subcarrier_spacing * (10 ** 6)) # T(s)
V_sym = 1 / T_sym # V_sym(symbols/s)
resource_block = 12
uplink_subcarrier_datarate = uplink_modulation * V_sym # bps
downlink_subcarrier_datarate = downlink_modulation * V_sym # bps
uplink_RB_datarate = uplink_subcarrier_datarate * resource_block
downlink_RB_datarate = downlink_subcarrier_datarate * resource_block
uplink_RE_datarate = uplink_RB_datarate / 10 # 10 Subframes (Slots)
downlink_RE_datarate = downlink_RB_datarate / 10 # 10 Subframes (Slots)
uplink_REs = math.ceil(uplink_datarate_needed / uplink_RE_datarate)
downlink_REs = math.ceil(downlink_datarate_needed / downlink_RE_datarate)
n_needed_REs = uplink_REs + downlink_REs
if self.max_allowed_REs != numpy.nan and n_needed_REs > self.max_allowed_REs:
n_needed_REs = self.max_allowed_REs
else:
if self.carrier_load is None or self.carrier_load < 80:
if uplink_REs < 10:
uplink_REs = 10
if downlink_REs < 10:
downlink_REs = 10
n_needed_REs = uplink_REs + downlink_REs
n_needed_RBs = math.ceil(n_needed_REs / 10)
# Search for empty resource
n_empty_RE_followed = 0
# Searching followed empty Resource Elements (REs)
initial_RB = None
initial_subframe = None
final_RB = None
final_subframe = None
for RE in range(n_needed_REs, 0, -1):
[was_it_found, initial_RB, initial_subframe, final_RB,
final_subframe] = self.searching_followed_empty_REs(RE, mimo_quadrant)
if was_it_found:
# Filling the followed empty Resource Elements (REs) if the empty resources were found
self.filling_REs(initial_RB, initial_subframe, final_RB, final_subframe, uplink_REs,
downlink_REs, mimo_quadrant, mobile, uplink_modulation,
downlink_modulation)
# Send AGCH
BP = BandwidthPart(0, initial_RB, initial_subframe, RE, mimo_quadrant)
carrier_resources[r][subframe + 5].get_channel().set_agch(mobiles[0], [BP])
self.connected_mobiles.append(mobile)
self.bandwidth_parts.append([BP])
break
# Every second
def long_scheduler(self):
carrier = 0 # Assumption: The RACH Channel is always is in the beacon carrier
carrier_resources = self.carrier_grid[carrier].get_resource_grid()
total_REs = [0 for mimo in range(self.mimo)]
used_REs = [0 for mimo in range(self.mimo)]
for RB in range(0, 275, 1):
for subframe in range(0, 10, 1):
channel_type = carrier_resources[RB][subframe].get_channel_type()
channel = carrier_resources[RB][subframe].get_channel()
if channel_type == "PSCH":
for mimo in range(self.mimo):
if channel.is_PSCH_occupied(mimo):
used_REs[mimo] = used_REs[mimo] + 1
total_REs[mimo] = total_REs[mimo] + 1
else:
total_REs[mimo] = total_REs[mimo] + 1
else:
for mimo in range(self.mimo):
used_REs[mimo] = used_REs[mimo] + 1
total_REs[mimo] = total_REs[mimo] + 1
carrier_load = [100 * (used_REs[mimo] / total_REs[mimo]) for mimo in range(self.mimo)]
total_carrier_load = (carrier_load[0] + carrier_load[1] + carrier_load[2] + carrier_load[3]) / 4
self.carrier_load = total_carrier_load
# Print Resources
print(
f'Base Station {self.base_id} -> Carriers: {1}, Subcarrier-spacing: {15} kHz, | Carrier 1: RBs: {275}, CCH RBs: {20}, RACH and AGCH RBs: {24}, PSCH RBs: {275 - (20 + 24)}, Carrier load: {round(total_carrier_load, 2)} %, Max allowed REs: {self.max_allowed_REs}')
# print(f'Carrier load per quadrant: {carrier_load[0]},{carrier_load[1]},{carrier_load[2]},{carrier_load[3]}')
if self.save:
self.info.append({
"carriers": 1,
"subcarrier-spacing": 15000,
"RBs": 275,
"CCH_RBs": 20,
"RACH_AGCH_RBs": 24,
"PSCH_RBs": 275 - (20 + 24),
"carrier_load": total_carrier_load,
"carrier_load_s1": carrier_load[0],
"carrier_load_s2": carrier_load[1],
"carrier_load_s3": carrier_load[2],
"carrier_load_s4": carrier_load[3],
"max_allowed_REs_per_device": self.max_allowed_REs,
})
# Quit resources from the users that are using more (only if 80% of resources are used)
if total_carrier_load > 80:
max_REs = 0
for n in self.bandwidth_parts:
n_REs = n[0].get_n_REs()
if n_REs > max_REs:
max_REs = n_REs
if max_REs > 1:
self.max_allowed_REs = n_REs - 1
else:
self.max_allowed_REs = 1
if self.max_allowed_REs > 100:
self.max_allowed_REs = 100
for i in range(max_REs, 100, -1):
if i > 1:
number = 0
for n in self.bandwidth_parts:
if n[0].get_n_REs() == i:
n_REs = 0
for RB in range(n[0].get_initial_RB(), 275, 1):
for subframe in range(0, 10, 1):
channel_type = carrier_resources[RB][subframe].get_channel_type()
channel = carrier_resources[RB][subframe].get_channel()
if channel_type == "PSCH":
if channel.get_mobile(n[0].get_resource_mimo_quadrant()) == \
self.connected_mobiles[number]:
n_REs = n_REs + 1
if n_REs == i:
self.empty_RE(n[0].get_initial_RB(), n[0].get_initial_subframe(),
n[0].get_resource_mimo_quadrant())
if n[0].get_initial_subframe() < 9:
n[0].set_initial_subframe(n[0].get_initial_subframe() + 1)
else:
n[0].set_initial_RB(n[0].get_initial_RB() + 1)
n[0].set_initial_subframe(0)
n[0].set_n_REs(i - 1)
number = number + 1
elif self.max_allowed_REs > 50:
self.max_allowed_REs = 50
for i in range(max_REs, 50, -1):
if i > 1:
number = 0
for n in self.bandwidth_parts:
if n[0].get_n_REs() == i:
n_REs = 0
for RB in range(n[0].get_initial_RB(), 275, 1):
for subframe in range(0, 10, 1):
channel_type = carrier_resources[RB][subframe].get_channel_type()
channel = carrier_resources[RB][subframe].get_channel()
if channel_type == "PSCH":
if channel.get_mobile(n[0].get_resource_mimo_quadrant()) == \
self.connected_mobiles[number]:
n_REs = n_REs + 1
if n_REs == i:
self.empty_RE(n[0].get_initial_RB(), n[0].get_initial_subframe(),
n[0].get_resource_mimo_quadrant())
if n[0].get_initial_subframe() < 9:
n[0].set_initial_subframe(n[0].get_initial_subframe() + 1)
else:
n[0].set_initial_RB(n[0].get_initial_RB() + 1)
n[0].set_initial_subframe(0)
n[0].set_n_REs(i - 1)
number = number + 1
elif self.max_allowed_REs > 20:
self.max_allowed_REs = 20
for i in range(max_REs, 20, -1):
if i > 1:
number = 0
for n in self.bandwidth_parts:
if n[0].get_n_REs() == i:
n_REs = 0
for RB in range(n[0].get_initial_RB(), 275, 1):
for subframe in range(0, 10, 1):
channel_type = carrier_resources[RB][subframe].get_channel_type()
channel = carrier_resources[RB][subframe].get_channel()
if channel_type == "PSCH":
if channel.get_mobile(n[0].get_resource_mimo_quadrant()) == \
self.connected_mobiles[number]:
n_REs = n_REs + 1
if n_REs == i:
self.empty_RE(n[0].get_initial_RB(), n[0].get_initial_subframe(),
n[0].get_resource_mimo_quadrant())
if n[0].get_initial_subframe() < 9:
n[0].set_initial_subframe(n[0].get_initial_subframe() + 1)
else:
n[0].set_initial_RB(n[0].get_initial_RB() + 1)
n[0].set_initial_subframe(0)
n[0].set_n_REs(i - 1)
number = number + 1
else:
# 19, 18, 17,....
if max_REs > 1:
number = 0
for n in self.bandwidth_parts:
if n[0].get_n_REs() == max_REs:
n_REs = 0
for RB in range(n[0].get_initial_RB(), 275, 1):
for subframe in range(0, 10, 1):
channel_type = carrier_resources[RB][subframe].get_channel_type()
channel = carrier_resources[RB][subframe].get_channel()
if channel_type == "PSCH":
if channel.get_mobile(n[0].get_resource_mimo_quadrant()) == \
self.connected_mobiles[number]:
n_REs = n_REs + 1
if n_REs == max_REs:
self.empty_RE(n[0].get_initial_RB(), n[0].get_initial_subframe(),
n[0].get_resource_mimo_quadrant())
if n[0].get_initial_subframe() < 9:
n[0].set_initial_subframe(n[0].get_initial_subframe() + 1)
else:
n[0].set_initial_RB(n[0].get_initial_RB() + 1)
n[0].set_initial_subframe(0)
n[0].set_n_REs(max_REs - 1)
number = number + 1
elif total_carrier_load > 40:
# Check if it works
if self.max_allowed_REs != numpy.nan:
self.max_allowed_REs = self.max_allowed_REs + 1
else:
self.max_allowed_REs = numpy.nan
self.allowed_change_of_resources = True
# Searching followed empty Resource Elements (REs): PSCH Resource Elements
def searching_followed_empty_REs(self, n_followed_REs, mimo_quadrant):
initial_RB = None
initial_subframe = None
final_RB = None
final_subframe = None
n_empty_followed_REs = 0
carrier_grid = self.carrier_grid[0].get_resource_grid() # TODO: Search in all carriers
for resource_block in range(0, 275):
for subframe in range(0, 10):
channel_type = carrier_grid[resource_block][subframe].get_channel_type()
if channel_type == "PSCH":
channel = carrier_grid[resource_block][subframe].get_channel()
if not channel.is_PSCH_occupied(mimo_quadrant):
if n_empty_followed_REs == 0:
initial_RB = resource_block
initial_subframe = subframe
n_empty_followed_REs = n_empty_followed_REs + 1
if n_empty_followed_REs == n_followed_REs:
final_RB = resource_block
final_subframe = subframe
return [True, initial_RB, initial_subframe, final_RB, final_subframe]
elif n_empty_followed_REs < n_followed_REs:
n_empty_followed_REs = n_empty_followed_REs + 1
if n_empty_followed_REs == n_followed_REs:
final_RB = resource_block
final_subframe = subframe
return [True, initial_RB, initial_subframe, final_RB, final_subframe]
else:
initial_RB = None
initial_subframe = None
final_RB = None
final_subframe = None
n_empty_followed_REs = 0
return [False, initial_RB, initial_subframe, final_RB, final_subframe]
def filling_REs(self, initial_RB, initial_subframe, final_RB, final_subframe, uplink_REs, downlink_REs,
mimo_quadrant, mobile, uplink_modulation, downlink_modulation):
n_filled_uplink_REs = 0
n_filled_downlink_REs = 0
carrier_grid = self.carrier_grid[0].get_resource_grid() # TODO: Search in all carriers
for resource_block in range(initial_RB, final_RB + 1):
if resource_block == initial_RB and resource_block == final_RB:
initial = initial_subframe
final = final_subframe
elif resource_block == initial_RB:
initial = initial_subframe
final = 9
elif resource_block == final_RB:
initial = 0
final = final_subframe
for subframe in range(0, final_RB): pass
else:
initial = 0
final = 9
# Filling alternate
for subframe in range(initial, final + 1):
if n_filled_downlink_REs < downlink_REs and subframe % 2 == 0:
carrier_grid[resource_block][subframe].get_channel().set_PSCH(mimo_quadrant, mobile, "PDSCH")
n_filled_downlink_REs = n_filled_downlink_REs + 1
elif n_filled_uplink_REs < uplink_REs and subframe % 2 != 0:
carrier_grid[resource_block][subframe].get_channel().set_PSCH(mimo_quadrant, mobile, "PUSCH")
n_filled_uplink_REs = n_filled_uplink_REs + 1
elif n_filled_downlink_REs < downlink_REs:
carrier_grid[resource_block][subframe].get_channel().set_PSCH(mimo_quadrant, mobile, "PDSCH")
n_filled_downlink_REs = n_filled_downlink_REs + 1
elif n_filled_uplink_REs < uplink_REs:
carrier_grid[resource_block][subframe].get_channel().set_PSCH(mimo_quadrant, mobile, "PUSCH")
n_filled_uplink_REs = n_filled_uplink_REs + 1
def empty_RE(self, RB, subframe, mimo_quadrant):
carrier_grid = self.carrier_grid[0].get_resource_grid()
carrier_grid[RB][subframe].get_channel().set_PSCH(mimo_quadrant, None, None)
def change_resources(self, mobile):
mobile_id = mobile.mobile_id
mobile_index = self.connected_mobiles.index(mobile_id)
bandwidth_part = self.bandwidth_parts[mobile_index][0]
# REs calculation
mimo_quadrant = bandwidth_part.get_resource_mimo_quadrant()
uplink_modulation = mobile.uplink_modulation
downlink_modulation = mobile.downlink_modulation
uplink_datarate_needed = mobile.uplink_data_rate
downlink_datarate_needed = mobile.downlink_data_rate
T_sym = 1 / (self.subcarrier_spacing * (10 ** 6)) # T(s)
V_sym = 1 / T_sym # V_sym(symbols/s)
resource_block = 12
uplink_subcarrier_datarate = uplink_modulation * V_sym # bps
downlink_subcarrier_datarate = downlink_modulation * V_sym # bps
uplink_RB_datarate = uplink_subcarrier_datarate * resource_block
downlink_RB_datarate = downlink_subcarrier_datarate * resource_block
uplink_RE_datarate = uplink_RB_datarate / 10 # 10 Subframes (Slots)
downlink_RE_datarate = downlink_RB_datarate / 10 # 10 Subframes (Slots)
uplink_REs = math.ceil(uplink_datarate_needed / uplink_RE_datarate)
downlink_REs = math.ceil(downlink_datarate_needed / downlink_RE_datarate)
n_needed_REs = uplink_REs + downlink_REs
if self.max_allowed_REs != numpy.nan and n_needed_REs > self.max_allowed_REs:
n_needed_REs = self.max_allowed_REs
else:
if self.carrier_load is None or self.carrier_load < 80:
if uplink_REs < 10:
uplink_REs = 10
if downlink_REs < 10:
downlink_REs = 10
n_needed_REs = uplink_REs + downlink_REs
n_needed_RBs = math.ceil(n_needed_REs / 10)
if (self.allowed_change_of_resources is True) or (
self.allowed_change_of_resources is False and n_needed_REs <= self.max_allowed_REs):
# Empty REs first
initial_RB = bandwidth_part.get_initial_RB()
initial_subframe = bandwidth_part.get_initial_subframe()
n_REs = bandwidth_part.get_n_REs()
for n in range(n_REs):
self.empty_RE(initial_RB, initial_subframe, bandwidth_part.get_resource_mimo_quadrant())
if initial_subframe == 9:
initial_subframe = 0
initial_RB = initial_RB + 1
else:
initial_subframe = initial_subframe + 1
# Searching followed empty Resource Elements (REs)
initial_RB = None
initial_subframe = None
final_RB = None
final_subframe = None
for RE in range(n_needed_REs, 0, -1):
[was_it_found, initial_RB, initial_subframe, final_RB,
final_subframe] = self.searching_followed_empty_REs(RE, mimo_quadrant)
if was_it_found:
# Filling the followed empty Resource Elements (REs) if the empty resources were found
self.filling_REs(initial_RB, initial_subframe, final_RB, final_subframe, uplink_REs, downlink_REs,
mimo_quadrant, mobile_id, uplink_modulation, downlink_modulation)
# Send AGCH
BP = BandwidthPart(0, initial_RB, initial_subframe, RE, mimo_quadrant)
mobile.bandwidth_parts[0] = BP
self.bandwidth_parts[mobile_index][0] = BP
break
else:
if RE == self.max_allowed_REs:
self.allowed_change_of_resources = False
def save_info(self):
self.save = True
def get_info(self):
return self.info
def get_save(self):
return self.save