|
| 1 | +/* Copyright 2025 The xLLM Authors. All Rights Reserved. |
| 2 | +Copyright 2024 The ScaleLLM Authors. All Rights Reserved. |
| 3 | +
|
| 4 | +Licensed under the Apache License, Version 2.0 (the "License"); |
| 5 | +you may not use this file except in compliance with the License. |
| 6 | +You may obtain a copy of the License at |
| 7 | +
|
| 8 | + https://github.com/jd-opensource/xllm/blob/main/LICENSE |
| 9 | +
|
| 10 | +Unless required by applicable law or agreed to in writing, software |
| 11 | +distributed under the License is distributed on an "AS IS" BASIS, |
| 12 | +WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. |
| 13 | +See the License for the specific language governing permissions and |
| 14 | +limitations under the License. |
| 15 | +==============================================================================*/ |
| 16 | + |
| 17 | +#include "mm_codec.h" |
| 18 | + |
| 19 | +namespace xllm { |
| 20 | + |
| 21 | +bool OpenCVImageDecoder::decode(const std::string& raw_data, torch::Tensor& t) { |
| 22 | + cv::Mat buffer(1, raw_data.size(), CV_8UC1, (void*)raw_data.data()); |
| 23 | + cv::Mat image = cv::imdecode(buffer, cv::IMREAD_COLOR); |
| 24 | + if (image.empty()) { |
| 25 | + LOG(INFO) << " opencv image decode failed"; |
| 26 | + return false; |
| 27 | + } |
| 28 | + |
| 29 | + cv::cvtColor(image, image, cv::COLOR_BGR2RGB); // RGB |
| 30 | + |
| 31 | + torch::Tensor tensor = |
| 32 | + torch::from_blob(image.data, {image.rows, image.cols, 3}, torch::kUInt8); |
| 33 | + |
| 34 | + t = tensor.permute({2, 0, 1}).clone(); // [C, H, W] |
| 35 | + return true; |
| 36 | +} |
| 37 | + |
| 38 | +bool OpenCVImageEncoder::encode(const torch::Tensor& t, std::string& raw_data) { |
| 39 | + if (!valid(t)) { |
| 40 | + return false; |
| 41 | + } |
| 42 | + |
| 43 | + auto img = t.permute({1, 2, 0}).contiguous(); |
| 44 | + cv::Mat mat(img.size(0), img.size(1), CV_32FC3, img.data_ptr<float>()); |
| 45 | + |
| 46 | + cv::Mat mat_8u; |
| 47 | + mat.convertTo(mat_8u, CV_8UC3, 255.0); |
| 48 | + |
| 49 | + // rgb -> bgr |
| 50 | + cv::cvtColor(mat_8u, mat_8u, cv::COLOR_RGB2BGR); |
| 51 | + |
| 52 | + std::vector<uchar> data; |
| 53 | + if (!cv::imencode(".png", mat_8u, data)) { |
| 54 | + LOG(ERROR) << "image encode faild"; |
| 55 | + return false; |
| 56 | + } |
| 57 | + |
| 58 | + raw_data.assign(data.begin(), data.end()); |
| 59 | + return true; |
| 60 | +} |
| 61 | + |
| 62 | +bool OpenCVImageEncoder::valid(const torch::Tensor& t) { |
| 63 | + if (t.dim() != 3 || t.size(0) != 3) { |
| 64 | + LOG(ERROR) << "input tensor must be 3HW tensor"; |
| 65 | + return false; |
| 66 | + } |
| 67 | + |
| 68 | + if (t.scalar_type() != torch::kFloat32 || !t.device().is_cpu()) { |
| 69 | + LOG(ERROR) << "tensor must be cpu float32"; |
| 70 | + return false; |
| 71 | + } |
| 72 | + |
| 73 | + return true; |
| 74 | +} |
| 75 | + |
| 76 | +} // namespace xllm |
0 commit comments