-
Notifications
You must be signed in to change notification settings - Fork 1
/
Copy pathCNN_EMG.py
195 lines (150 loc) · 5.96 KB
/
CNN_EMG.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
import torch
import numpy as np
import random
import logging
logging.getLogger('matplotlib').setLevel(logging.WARNING)
from Hook_Manager import Hook_Manager
# Imports for Setup_Run
from Setup.Parse_Arguments import Parse_Arguments
from Setup.Parse_Config import Parse_Config
# Imports for Data_Initializer
from Data.X_Data import X_Data
from Data.Y_Data import Y_Data
from Data.Label_Data import Label_Data
from Data.Combined_Data import Combined_Data
# Imports for Data_Splitter
from importlib import import_module
# Imports for Run_Model
from Model.CNN_Trainer import CNN_Trainer
from Model.Unlabeled_Domain_Adaptation_Trainer import Unlabeled_Domain_Adaptation_Trainer
from Model.MLP_Trainer import MLP_Trainer
from Model.SVC_RF_Trainer import SVC_RF_Trainer
from Model.IRM_CNN_Based_Trainer import IRM_CNN_Based_Trainer
from Model.IRM_MLP_Based_Trainer import IRM_MLP_Based_Trainer
from Model.CORAL_Trainer import CORAL_Trainer
class Run_Setup():
"""
Sets up the run by reading in arguments, setting the dataset source, conducting safety checks, printing values and setting up env.
Returns:
env: Setup object which contains necessary information for the run
"""
def __init__(self, config_args=None):
self.config_args = config_args
def set_seeds_for_reproducibility(self, env):
""" Set seeds for reproducibility.
"""
seed = env.args.seed
random.seed(seed)
np.random.seed(seed)
torch.manual_seed(seed)
torch.cuda.manual_seed_all(seed)
torch.backends.cudnn.deterministic = True
torch.backends.cudnn.benchmark = False
def setup_run(self):
if self.config_args:
run = Parse_Config(self.config_args)
else:
run = Parse_Arguments()
run.set_args()
run.setup_for_dataset()
run.set_exercise()
run.print_params()
env = run.set_env()
self.set_seeds_for_reproducibility(env)
return env
class Data_Initializer():
"""
Loads in the data for the run. (EMG/labels/forces)
"""
def __init__(self, env):
self.args = env.args
self.utils = env.utils
self.exercises = env.exercises
self.leaveOut = env.leaveOut
self.env = env
self.num_gestures = env.num_gestures
self.X = None
self.Y = None
self.label = None
def initialize_data(self):
"""
Loads data for X, Y, and Label classes. Scaler normalizes EMG data, sets leave out indices, creates new folder name for images, acquires images, and prints data information.
"""
# Initialize class objects
self.X = X_Data(self.env)
self.Y = Y_Data(self.env)
self.label = Label_Data(self.env)
# Wrapper class to call operations on all three
all_data = Combined_Data(self.X, self.Y, self.label, self.env)
all_data.load_data()
all_data.scaler_normalize_emg()
self.X.load_images()
self.X.print_data_information()
return self.X, self.Y, self.label
class Data_Splitter():
def __init__(self, env):
self.args = env.args
self.utils = env.utils
self.env = env
def split_data(self, X_data, Y_data, label_data):
if self.args.leave_one_session_out:
split_strategy = "Leave_One_Session_Out"
elif self.args.leave_one_subject_out:
split_strategy = "Leave_One_Subject_Out"
elif self.utils.num_subjects == 1:
split_strategy = "Single_Subject"
else:
raise ValueError("Please specify the type of test you want to run")
strategy_module = import_module(f"Split_Strategies.{split_strategy}")
strategy_class = getattr(strategy_module, split_strategy)
strategy_class = strategy_class(X_data, Y_data, label_data, self.env)
strategy_class.split()
class Run_Model():
def __init__(self, env):
self.args = env.args
self.utils = env.utils
self.exercises = env.exercises
self.leaveOut = env.leaveOut
self.env = env
self.num_gestures = env.num_gestures
def run_model(self, X, Y, label):
if self.args.turn_on_unlabeled_domain_adaptation:
model_trainer = Unlabeled_Domain_Adaptation_Trainer(X, Y, label, self.env)
else:
if self.args.model == "MLP":
if self.args.domain_generalization == "IRM":
model_trainer = IRM_MLP_Based_Trainer(X, Y, label, self.env)
else:
model_trainer = MLP_Trainer(X, Y, label, self.env)
elif self.args.model in ["SVC", "RF"]:
model_trainer = SVC_RF_Trainer(X, Y, label, self.env)
else:
if self.args.domain_generalization == "IRM":
model_trainer = IRM_CNN_Based_Trainer(X, Y, label, self.env)
elif self.args.domain_generalization == "CORAL":
model_trainer = CORAL_Trainer(X, Y, label, self.env)
else:
model_trainer = CNN_Trainer(X, Y, label, self.env)
model_trainer.setup_model()
model_trainer.model_loop()
def main(config_args=None):
hooks = Hook_Manager()
run_setup = Run_Setup(config_args)
hooks.register_hook("setup_run", run_setup.setup_run)
env = hooks.call_hook("setup_run")
data_initializer = Data_Initializer(env)
hooks.register_hook("initialize_data", data_initializer.initialize_data)
X, Y, label = hooks.call_hook("initialize_data")
data_splitter = Data_Splitter(env)
hooks.register_hook("split_data", data_splitter.split_data)
hooks.call_hook("split_data", X, Y, label)
run_model = Run_Model(env)
hooks.register_hook("run_model", run_model.run_model)
hooks.call_hook("run_model", X, Y, label)
def use_config(config_args):
"""
Called by run_CNN_EMG if a config file is passed.
"""
main(config_args)
if __name__ == "__main__":
main()