-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathengine_finetune_multi_sup_0508.py
255 lines (185 loc) · 8.72 KB
/
engine_finetune_multi_sup_0508.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
# Copyright (c) Meta Platforms, Inc. and affiliates.
# All rights reserved.
# This source code is licensed under the license found in the
# LICENSE file in the root directory of this source tree.
# --------------------------------------------------------
# References:
# DeiT: https://github.com/facebookresearch/deit
# BEiT: https://github.com/microsoft/unilm/tree/master/
# --------------------------------------------------------
import math
import sys
#from typing import Iterable, Optionalbeit
import numpy as np
import os
import torch
from timm.data import Mixup
from timm.utils import accuracy
import pickle
import util.misc as misc
import util.lr_sched as lr_sched
import datetime
def train_one_epoch(model: torch.nn.Module, criterion: torch.nn.Module,
data_loader, optimizer: torch.optim.Optimizer,
device: torch.device, epoch: int, loss_scaler, max_norm: float = 0,
mixup_fn=None, log_writer=None,
args=None):
model.train(True)
metric_logger = misc.MetricLogger(delimiter=" ")
metric_logger.add_meter('lr', misc.SmoothedValue(window_size=1, fmt='{value:.6f}'))
current_time = datetime.datetime.now().strftime('%H:%M:%S.%f')[:-3]
header = 'Time: [{}] Epoch: [{}]'.format(current_time, epoch)
print_freq = 50
accum_iter = 1
optimizer.zero_grad()
if log_writer is not None:
print('log_dir: {}'.format(log_writer.log_dir))
for data_iter_step, (samples,context,context2, targets) in enumerate(metric_logger.log_every(data_loader, print_freq, epoch)):
optimizer.zero_grad()
samples = samples.to(device, non_blocking=True)
context = context.to(device, non_blocking=True)
context2 = context2.to(device, non_blocking=True)
targets = targets.to(device, non_blocking=True)
if mixup_fn is not None:
samples, targets = mixup_fn(samples, targets)
with torch.cuda.amp.autocast():
outputs,outputs2,outputs3 = model(samples,context,context2)
loss = criterion(outputs, targets)+criterion(outputs2, targets)+criterion(outputs3, targets)
loss_value = loss.item()
if not math.isfinite(loss_value):
print("Loss is {}, stopping training".format(loss_value))
optimizer.zero_grad()
continue
loss /= accum_iter
loss_scaler(loss, optimizer, clip_grad=max_norm,
parameters=model.parameters(), create_graph=False,
update_grad=(data_iter_step + 1) % accum_iter == 0)
metric_logger.update(loss=loss_value)
min_lr = 10.
max_lr = 0.
for group in optimizer.param_groups:
min_lr = min(min_lr, group["lr"])
max_lr = max(max_lr, group["lr"])
metric_logger.update(lr=max_lr)
loss_value_reduce = misc.all_reduce_mean(loss_value)
if log_writer is not None and (data_iter_step + 1) % accum_iter == 0:
epoch_1000x = int((data_iter_step / len(data_loader) + epoch) * 1000)
log_writer.add_scalar('loss', loss_value_reduce, epoch_1000x)
log_writer.add_scalar('lr', max_lr, epoch_1000x)
metric_logger.synchronize_between_processes()
print("Averaged stats:", metric_logger)
return {k: meter.global_avg for k, meter in metric_logger.meters.items()}
def accuracy_cls(output, target, topk=(1,)):
"""Computes the accuracy over the k top predictions for the specified values of k"""
num_classes = 30
maxk = min(max(topk), output.size()[1])
batch_size = target.size(0)
_, pred = output.topk(maxk, 1, True, True)
pred = pred.t()
correct = pred.eq(target.reshape(1, -1).expand_as(pred))
class_top1_correct = torch.zeros(num_classes)
class_top5_correct = torch.zeros(num_classes)
class_sample_count = torch.zeros(num_classes)
# 计算每个类别的 Top-1 和 Top-5 命中次数
for i in range(num_classes):
# 对于每个样本,计算该样本是否属于当前类别
is_class_i = (target == i).to(torch.int) # 将布尔值转换为整数 1 或 0
# 计算 Top-1 命中次数
top1_correct_class_i = (correct[0] * is_class_i).sum()
class_top1_correct[i] = top1_correct_class_i.item()
# 计算 Top-5 命中次数
top5_correct_class_i = (correct.sum(dim=0) * is_class_i).sum()
class_top5_correct[i] = top5_correct_class_i.item()
class_sample_count[i] = is_class_i.sum().item()
# 计算每个类别的 acc1 和 acc5
total_samples = len(target)
acc1_per_class = torch.zeros(num_classes)
acc5_per_class = torch.zeros(num_classes)
for i in range(num_classes):
if class_sample_count[i] > 0:
acc1_per_class[i] = class_top1_correct[i] / class_sample_count[i]
acc5_per_class[i] = class_top5_correct[i] / class_sample_count[i]
else:
acc1_per_class[i] = -1
acc5_per_class[i] = -1
acc1 = torch.mean(acc1_per_class).item()
acc5 = torch.mean(acc5_per_class).item()
#return [correct[:min(k, maxk)].reshape(-1).float().sum(0) * 100. / batch_size for k in topk],acc1_per_class,acc5_per_class
return (acc1,acc5)
#return acc1_per_class,acc5_per_class
@torch.no_grad()
def evaluate(data_loader, model, device):
criterion = torch.nn.CrossEntropyLoss()
metric_logger = misc.MetricLogger(delimiter=" ")
header = 'Test:'
# switch to evaluation mode
model.eval()
stat_wyn = []
stat_target = []
stat_pred = []
outputs = []
outputs1,outputs2,outputs3 = [],[],[]
targets = []
for batch in metric_logger.log_every(data_loader, 10, header):
images = batch[0]
context = batch[1]
context2 = batch[2]
target = batch[-1]
#print(target.numpy())
images = images.to(device, non_blocking=True)
context = context.to(device, non_blocking=True)
context2 = context2.to(device, non_blocking=True)
target = target.to(device, non_blocking=True)
# compute output
#with torch.cuda.amp.autocast():
#记得改
with torch.cuda.amp.autocast():
output1,output2,output3 = model(images,context,context2)
#output = (output1+output2+output3)/3.0
output = output3
#output = model(images)
loss = criterion(output, target)
_, pred = output.topk(1, 1, True, True)
pred_numpy = pred.detach().cpu().numpy()
stat_pred.append(pred_numpy)
target_np = target.detach().cpu().numpy()
stat_target.append(target_np)
outputs.append(output)
output1_numpy = output1.detach().cpu().numpy()
output2_numpy = output2.detach().cpu().numpy()
output3_numpy = output3.detach().cpu().numpy()
outputs1.append(output1_numpy)
outputs2.append(output2_numpy)
outputs3.append(output3_numpy)
targets.append(target)
acc = accuracy(output, target, topk=(1, 5))
acc1, acc5 = acc
batch_size = images.shape[0]
metric_logger.update(loss=loss.item())
metric_logger.meters['acc1'].update(acc1.item(), n=batch_size)
metric_logger.meters['acc5'].update(acc5.item(), n=batch_size)
path = os.path.join(r"/media/dell/DATA/wyn/code/MAEPretrain_SceneClassification/save", 'tmptmptmp_pred.pkl')
with open(path, "wb") as f:
pickle.dump(stat_pred, f)
path = os.path.join(r"/media/dell/DATA/wyn/code/MAEPretrain_SceneClassification/save", 'tmptmptmp_target.pkl')
with open(path, "wb") as f:
pickle.dump(stat_target, f)
path = os.path.join(r"/media/dell/DATA/wyn/code/MAEPretrain_SceneClassification/save", 'outputs1.pkl')
with open(path, "wb") as f:
pickle.dump(outputs1, f)
path = os.path.join(r"/media/dell/DATA/wyn/code/MAEPretrain_SceneClassification/save", 'outputs2.pkl')
with open(path, "wb") as f:
pickle.dump(outputs2, f)
path = os.path.join(r"/media/dell/DATA/wyn/code/MAEPretrain_SceneClassification/save", 'outputs3.pkl')
with open(path, "wb") as f:
pickle.dump(outputs3, f)
output = torch.cat(outputs,dim=0)
target = torch.cat(targets,dim=0)
acc = accuracy_cls(output, target, topk=(1, 5))
acc1, acc5 = acc
print('*Class!!! Acc@1 {top1:.3f} Acc@5 {top5:.3f}'.format(top1=acc1, top5=acc5))
metric_logger.synchronize_between_processes()
print('*Instance!!!! Acc@1 {top1.global_avg:.3f} Acc@5 {top5.global_avg:.3f} loss {losses.global_avg:.3f}'
.format(top1=metric_logger.acc1, top5=metric_logger.acc5, losses=metric_logger.loss))
#return {k: meter.global_avg for k, meter in metric_logger.meters.items()}
return {'acc1':acc1,'acc5':acc5}