-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathtrain.py
286 lines (196 loc) · 9.78 KB
/
train.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
import argparse
import datetime
import json
import numpy as np
import os
import time
from pathlib import Path
import torch
import torch.backends.cudnn as cudnn
from torch.utils.tensorboard import SummaryWriter
import timm
from timm.models.layers import trunc_normal_
from timm.data.mixup import Mixup
from timm.loss import LabelSmoothingCrossEntropy, SoftTargetCrossEntropy
import util.lr_decay as lrd
import util.misc as misc
from util.pos_embed import interpolate_pos_embed
from util.misc import NativeScalerWithGradNormCount as NativeScaler
from torch.utils.data import WeightedRandomSampler
from util.datasets_MEET_1125 import build_dataset
def get_args_parser():
parser = argparse.ArgumentParser('MAE fine-tuning for image classification', add_help=False)
parser.add_argument('--batch_size', default=64, type=int,
help='Batch size per GPU (effective batch size is batch_size * accum_iter * # gpus')
parser.add_argument('--epochs', default=50, type=int)
parser.add_argument('--accum_iter', default=1, type=int,
help='Accumulate gradient iterations (for increasing the effective batch size under memory constraints)')
# Model parameters
parser.add_argument('--model', default=None, type=str, metavar='MODEL',
help='Name of model to train')
parser.add_argument('--input_size', default=224, type=int,
help='images input size')
parser.add_argument('--drop_path', type=float, default=0, metavar='PCT',
help='Drop path rate (default: 0.1)')
# Optimizer parameters
parser.add_argument('--clip_grad', type=float, default=None, metavar='NORM',
help='Clip gradient norm (default: None, no clipping)')
parser.add_argument('--weight_decay', type=float, default=1e-8,
help='weight decay (default: 0.05)')
parser.add_argument('--lr', type=float, default=2e-5, metavar='LR',
help='learning rate (absolute lr)')
parser.add_argument('--blr', type=float, default=1.25e-4, metavar='LR',
help='base learning rate: absolute_lr = base_lr * total_batch_size / 256')
parser.add_argument('--layer_decay', type=float, default=0.75,
help='layer-wise lr decay from ELECTRA/BEiT')
parser.add_argument('--min_lr', type=float, default=1e-6, metavar='LR',
help='lower lr bound for cyclic schedulers that hit 0')
parser.add_argument('--output_dir', default='./output_dir',
help='path where to save, empty for no saving')
parser.add_argument('--log_dir', default='./output_dir',
help='path where to tensorboard log')
parser.add_argument('--device', default='cuda',
help='device to use for training / testing')
parser.add_argument('--num_workers', default=8, type=int)
parser.add_argument('--dataset', default=None, type=str,help='type of dataset')
parser.add_argument("--split", default=None, type=int, help='trn-tes ratio')
parser.add_argument("--tag", default=None, type=int, help='different idx (trn_num for millionaid, idx for others)')
parser.add_argument("--exp_num", default=0, type=int, help='number of experiment times')
parser.add_argument("--save_freq", default=10, type=int, help='number of saving frequency')
parser.add_argument("--eval_freq", default=1, type=int, help='number of evaluation frequency')
return parser
def main(args):
device = torch.device(args.device)
cudnn.benchmark = True
dataset_train = build_dataset(is_train=True, is_val=False, args=args)
dataset_val = build_dataset(is_train=False, is_val=True, args=args)
dataset_test = build_dataset(is_train=False, is_val=False, args=args)
sampler_train = torch.utils.data.SequentialSampler(dataset_train)
sampler_val = torch.utils.data.SequentialSampler(dataset_val)
sampler_test = torch.utils.data.SequentialSampler(dataset_test)
os.makedirs(args.log_dir, exist_ok=True)
log_writer = SummaryWriter(log_dir=args.log_dir)
batch_size = int(args.batch_size)
num_workers = int(args.num_workers)
data_loader_train = torch.utils.data.DataLoader(
dataset_train,
shuffle=True,
batch_size=batch_size,
num_workers=num_workers,
pin_memory=True,
drop_last=True,
)
data_loader_val = torch.utils.data.DataLoader(
dataset_val, sampler=sampler_val,
batch_size=batch_size,
num_workers=num_workers,
pin_memory=True,
drop_last=False
)
data_loader_test = torch.utils.data.DataLoader(
dataset_test, sampler=sampler_test,
batch_size=batch_size,
num_workers=num_workers,
pin_memory=True,
drop_last=False
)
from util.config_peft import _C as cfg
cfg_model_file = os.path.join("./", "clip_vit_b16_peft" + ".yaml")
cfg.defrost()
cfg.merge_from_file(cfg_model_file)
model = None
from CAT_model import CAT
model = CAT(device=device, cfg=cfg)
from engine_finetune_multi_sup_0508 import train_one_epoch, evaluate
model_dict = model.state_dict()
pretrained_weights = torch.load("swin_large_patch4_window7_224_22k.pth", map_location=device)["model"]
pretrained_dict = {k: v for k, v in pretrained_weights.items() if k in model_dict}
model_dict.update(pretrained_dict)
model.load_state_dict(model_dict)
loaded_keys = set(pretrained_dict.keys())
existing_keys = set(model_dict.keys())
print("Successfully loaded params:")
for k in loaded_keys:
print(k)
print("\nUnused weights in the pretrained file:")
for k in pretrained_weights.keys():
if k not in loaded_keys:
print(k)
print("\nMissing weights in the current model:")
for k in existing_keys:
if k not in loaded_keys:
print(k)
model.to(device)
import time
if args.lr is None: # only base_lr is specified
args.lr = args.blr * args.batch_size / 256
args.lr = args.lr/64*args.batch_size
cur_lr = args.lr*0.01
time.sleep(10)
optimizer = torch.optim.AdamW([
{"params": model.tuner1.parameters(), "lr": cur_lr, "weight_decay": args.weight_decay},
{"params": model.tuner2.parameters(), "lr": cur_lr, "weight_decay": args.weight_decay},
{"params": model.tuner3.parameters(), "lr": cur_lr, "weight_decay": args.weight_decay},
{"params": model.head1.parameters(), "lr": cur_lr, "weight_decay": args.weight_decay},
{"params": model.head2.parameters(), "lr": cur_lr, "weight_decay": args.weight_decay},
{"params": model.head3.parameters(), "lr": cur_lr, "weight_decay": args.weight_decay},
{"params": model.global_context_module_12head.parameters(), "lr": cur_lr,
"weight_decay": args.weight_decay}
], lr=try_lr, weight_decay=args.weight_decay)
loss_scaler = NativeScaler()
from la_loss import LogitAdjustedLoss
tmp_labels = dataset_train.targets.copy()
tmp = np.unique(tmp_labels, return_counts=True) # 每个类别出现了几次
tmp_sum = tmp[1]
cls_num_list = tmp_sum
criterion = LogitAdjustedLoss(cls_num_list=torch.tensor(cls_num_list).to(device))
if args.eval:
test_stats = evaluate(data_loader_val, model, device)
print(f"Accuracy of the network on the {len(dataset_val)} test images: {test_stats['acc1']:.1f}%")
exit(0)
print(f"Start training for {args.epochs} epochs")
start_time = time.time()
max_accuracy = 0.0
best_acc1 = max_accuracy
print("初始化acc")
print(best_acc1)
for epoch in range(20):
mixup_fn = None
model.train()
train_stats = train_one_epoch(
model, criterion, data_loader_train,
optimizer, device, epoch, loss_scaler,
args.clip_grad, mixup_fn,
log_writer=log_writer,
args=args
)
if epoch % args.eval_freq == 0:
test_stats = evaluate(data_loader_val, model, device)
print(f"Accuracy of the network on the {len(dataset_val)} test images: {test_stats['acc1']:.1f}%")
max_accuracy = max(max_accuracy, test_stats["acc1"])
print(f'Max accuracy: {max_accuracy:.2f}%')
if test_stats["acc1"] > best_acc1:
save_state = {'model': model.state_dict(),
'optimizer': optimizer.state_dict(),
'max_accuracy': max_accuracy,
'epoch': epoch,
'args': args}
save_name = "adaptformer_multi_sup_weight_MEET_adjust_lr.pth"
save_path = os.path.join(args.output_dir, save_name)
print(f"{save_path} saving......")
torch.save(save_state, save_path)
print(f"{save_path} saved !!!")
best_acc1 = test_stats["acc1"]
test_stats = evaluate(data_loader_test, model, device)
print(f"Accuracy of the network on the {len(dataset_val)} test images: {test_stats['acc1']:.1f}%")
max_accuracy = max(max_accuracy, test_stats["acc1"])
print(f'Max accuracy: {max_accuracy:.2f}%')
total_time = time.time() - start_time
total_time_str = str(datetime.timedelta(seconds=int(total_time)))
print('Onetime training time {}'.format(total_time_str))
if __name__ == '__main__':
args = get_args_parser()
args = args.parse_args()
if args.output_dir:
Path(args.output_dir).mkdir(parents=True, exist_ok=True)
main(args)