forked from afraenkel/capstone-malware-domain
-
Notifications
You must be signed in to change notification settings - Fork 10
/
Copy pathreferences.bib
370 lines (340 loc) · 13.1 KB
/
references.bib
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
---
---
@article{Moreno:2019neq,
author = "Moreno, Eric A. and Nguyen, Thong Q. and Vlimant, Jean-Roch and Cerri, Olmo and Newman, Harvey B. and Periwal, Avikar and Spiropulu, Maria and Duarte, Javier M. and Pierini, Maurizio",
title = "{Interaction networks for the identification of boosted $H \rightarrow b\overline{b}$ decays}",
eprint = "1909.12285",
archivePrefix = "arXiv",
primaryClass = "hep-ex",
reportNumber = "FERMILAB-PUB-19-492-CMS-E",
doi = "10.1103/PhysRevD.102.012010",
journal = "Phys. Rev. D",
volume = "102",
pages = "012010",
year = "2020"
}
@article{Sirunyan:2017ezt,
author = "Sirunyan, A.M. and others",
collaboration = "CMS",
title = "{Identification of heavy-flavour jets with the CMS detector in pp collisions at 13 TeV}",
eprint = "1712.07158",
archivePrefix = "arXiv",
primaryClass = "physics.ins-det",
reportNumber = "CMS-BTV-16-002, CERN-EP-2017-326",
doi = "10.1088/1748-0221/13/05/P05011",
journal = "J. Instrum.",
volume = "13",
number = "05",
pages = "P05011",
year = "2018"
}
@book{Marzani:2019hun,
author = "Marzani, Simone and Soyez, Gregory and Spannowsky, Michael",
title = "{Looking inside jets: an introduction to jet substructure and boosted-object phenomenology}",
eprint = "1901.10342",
archivePrefix = "arXiv",
primaryClass = "hep-ph",
doi = "10.1007/978-3-030-15709-8",
publisher = "Springer",
volume = "958",
year = "2019"
}
@article{Asquith:2018igt,
author = "Kogler, Roman and others",
title = "{Jet Substructure at the Large Hadron Collider: Experimental Review}",
eprint = "1803.06991",
archivePrefix = "arXiv",
primaryClass = "hep-ex",
reportNumber = "FERMILAB-PUB-18-123-PPD",
doi = "10.1103/RevModPhys.91.045003",
journal = "Rev. Mod. Phys.",
volume = "91",
number = "4",
pages = "045003",
year = "2019"
}
@article{Komiske:2018cqr,
author = "Komiske, Patrick T. and Metodiev, Eric M. and Thaler, Jesse",
title = "{Energy Flow Networks: Deep Sets for Particle Jets}",
eprint = "1810.05165",
archivePrefix = "arXiv",
primaryClass = "hep-ph",
reportNumber = "MIT-CTP 5064",
doi = "10.1007/JHEP01(2019)121",
journal = "J. High Energy Phys.",
volume = "01",
pages = "121",
year = "2019"
}
@inproceedings{NIPS2017_6931,
title = {Deep Sets},
author = {Zaheer, Manzil and Kottur, Satwik and Ravanbakhsh, Siamak and Poczos, Barnabas and Salakhutdinov, Russ R and Smola, Alexander J},
booktitle = {Advances in Neural Information Processing Systems 30},
editor = {I. Guyon and U. V. Luxburg and S. Bengio and H. Wallach and R. Fergus and S. Vishwanathan and R. Garnett},
pages = {3391},
year = {2017},
publisher = {Curran Associates, Inc.},
url = {http://papers.nips.cc/paper/6931-deep-sets.pdf},
eprint = "1703.06114",
primaryClass = "cs.LG"
}
@inproceedings{Pivarski:2020qcb,
author = "Pivarski, Jim and Elmer, Peter and Lange, David",
title = "{Awkward Arrays in Python, C++, and Numba}",
booktitle = "{24th International Conference on Computing in High Energy and Nuclear Physics}",
eprint = "2001.06307",
archivePrefix = "arXiv",
primaryClass = "cs.MS",
month = "1",
year = "2020"
}
@misc{opendata,
author = "Duarte, Javier",
collaboration = "CMS",
title = "{Sample with jet, track and secondary vertex properties for {Hbb} tagging {ML} studies {\texttt{HiggsToBBNTuple\_HiggsToBB\_QCD\_RunII\_13TeV\_MC}}}",
doi = "10.7483/OPENDATA.CMS.JGJX.MS7Q",
note = "{CERN Open Data Portal}",
year = 2019,
url = "http://opendata.cern.ch/record/12102"
}
@inproceedings{deepjet,
author = "Markus Stoye and Jan Kieseler and Mauro Verzetti and Huilin Qu and Loukas Gouskos and Anna Stakia",
title = "{DeepJet}: Generic physics object based jet multiclass classification for {LHC} experiments",
collaboration = "CMS",
booktitle = "Deep Learning for Physical Sciences Workshop at the 31st Conference on Neural Information Processing Systems (NeurIPS)",
year = "2017",
url = "https://dl4physicalsciences.github.io/files/nips_dlps_2017_10.pdf"
}
@article{Qu:2019gqs,
author = "Qu, Huilin and Gouskos, Loukas",
title = "{ParticleNet: Jet Tagging via Particle Clouds}",
eprint = "1902.08570",
archivePrefix = "arXiv",
primaryClass = "hep-ph",
doi = "10.1103/PhysRevD.101.056019",
journal = "Phys. Rev. D",
volume = "101",
number = "5",
pages = "056019",
year = "2020"
}
@article{deOliveira:2015xxd,
author = "de Oliveira, Luke and Kagan, Michael and Mackey, Lester and Nachman, Benjamin and Schwartzman, Ariel",
title = "{Jet-images \textemdash{} deep learning edition}",
eprint = "1511.05190",
archivePrefix = "arXiv",
primaryClass = "hep-ph",
doi = "10.1007/JHEP07(2016)069",
journal = "J. High Energy Phys.",
volume = "07",
pages = "069",
year = "2016"
}
@article{Moreno:2019bmu,
author = "Moreno, Eric A. and Cerri, Olmo and Duarte, Javier M. and Newman, Harvey B. and Nguyen, Thong Q. and Periwal, Avikar and Pierini, Maurizio and Serikova, Aidana and Spiropulu, Maria and Vlimant, Jean-Roch",
title = "{JEDI-net: a jet identification algorithm based on interaction networks}",
eprint = "1908.05318",
archivePrefix = "arXiv",
primaryClass = "hep-ex",
reportNumber = "FERMILAB-PUB-19-360-PPD",
doi = "10.1140/epjc/s10052-020-7608-4",
journal = "Eur. Phys. J. C",
volume = "80",
number = "1",
pages = "58",
year = "2020"
}
@article{Dolen:2016kst,
author = "Dolen, James and Harris, Philip and Marzani, Simone and Rappoccio, Salvatore and Tran, Nhan",
title = "{Thinking outside the ROCs: Designing Decorrelated Taggers (DDT) for jet substructure}",
eprint = "1603.00027",
archivePrefix = "arXiv",
primaryClass = "hep-ph",
reportNumber = "FERMILAB-PUB-16-046-PPD",
doi = "10.1007/JHEP05(2016)156",
journal = "J. High Energy Phys.",
volume = "05",
pages = "156",
year = "2016"
}
@techreport{ATL-PHYS-PUB-2018-014,
title = "{Performance of mass-decorrelated jet substructure
observables for hadronic two-body decay tagging in ATLAS}",
author = "{ATLAS Collaboration}",
collaboration = "ATLAS",
number = "ATL-PHYS-PUB-2018-014",
institution = "CERN",
type = "ATLAS Public Note",
year = "2018",
reportNumber = "ATL-PHYS-PUB-2018-014",
url = "http://cds.cern.ch/record/2630973",
}
@article{Chatrchyan:2012jua,
author = "Chatrchyan, Serguei and others",
collaboration = "CMS",
title = "{Identification of b-Quark Jets with the CMS Experiment}",
eprint = "1211.4462",
archivePrefix = "arXiv",
primaryClass = "hep-ex",
reportNumber = "CMS-BTV-12-001, CERN-PH-EP-2012-262",
doi = "10.1088/1748-0221/8/04/P04013",
journal = "J. Instrum.",
volume = "8",
pages = "P04013",
year = "2013"
}
@techreport{CMS-PAS-JME-13-002,
title = "{Performance of quark/gluon discrimination in 8 TeV pp
data}",
author = "{CMS Collaboration}",
collaboration = "CMS",
number = "CMS-PAS-JME-13-002",
year = "2013",
reportNumber = "CMS-PAS-JME-13-002",
institution = "CERN",
type = "CMS Physics Analysis Summary",
url = "https://cds.cern.ch/record/1599732",
}
@inproceedings{Louppe:2016ylz,
author = "Louppe, Gilles and Kagan, Michael and Cranmer, Kyle",
title = "{Learning to Pivot with Adversarial Networks}",
eprint = "1611.01046",
archivePrefix = "arXiv",
primaryClass = "stat.ML",
year = "2017",
booktitle = {Advances in Neural Information Processing Systems 30},
editor = {I. Guyon and U. V. Luxburg and S. Bengio and H. Wallach and R. Fergus and S. Vishwanathan and R. Garnett},
pages = {981},
publisher = {Curran Associates, Inc.},
url = {http://papers.nips.cc/paper/6699-learning-to-pivot-with-adversarial-networks.pdf}
}
@InProceedings{ganin2014unsupervised,
title = {Unsupervised Domain Adaptation by Backpropagation},
author = {Yaroslav Ganin and Victor Lempitsky},
pages = {1180},
year = {2015},
editor = {Francis Bach and David Blei},
volume = {37},
series = {Proceedings of Machine Learning Research},
address = {Lille, France},
publisher = {PMLR},
url = {http://proceedings.mlr.press/v37/ganin15.html},
booktitle = "Proceedings of the 32nd International Conference on Machine Learning",
eprint={1409.7495},
archivePrefix={arXiv},
primaryClass={stat.ML}
}
@article{Sirunyan:2019nfw,
author = "Sirunyan, Albert M and others",
collaboration = "CMS",
title = "{A deep neural network to search for new long-lived particles decaying to jets}",
eprint = "1912.12238",
archivePrefix = "arXiv",
primaryClass = "hep-ex",
reportNumber = "CMS-EXO-19-011, CERN-EP-2019-281",
year = "2020",
volume = {1},
pages = {035012},
doi = {10.1088/2632-2153/ab9023},
journal = {Mach. Learn.: Sci. Technol.},
}
@article{Shlomi:2020gdn,
author = "Shlomi, Jonathan and Battaglia, Peter and Vlimant, Jean-Roch",
title = "Graph Neural Networks in Particle Physics",
eprint = "2007.13681",
archivePrefix = "arXiv",
primaryClass = "hep-ex",
month = "7",
year = "2020",
volume = "2",
pages = "021001",
journal = "Mach. Learn.: Sci. Tech.",
doi = "10.1088/2632-2153/abbf9a"
}
@inproceedings{PyTorchGeometric,
title={Fast Graph Representation Learning with {PyTorch Geometric}},
author={Fey, Matthias and Lenssen, Jan E.},
booktitle={ICLR Workshop on Representation Learning on Graphs and Manifolds},
archivePrefix = {arXiv},
eprint = {1903.02428},
primaryClass = "cs.LG",
url = "https://pytorch-geometric.readthedocs.io/",
year={2019},
}
@article{Jones:2014uza,
author = "Jones, C.D. and Sexton-Kennedy, E.",
editor = "Groep, D.L. and Bonacorsi, D.",
title = "{Stitched Together: Transitioning CMS to a Hierarchical Threaded Framework}",
doi = "10.1088/1742-6596/513/2/022034",
journal = "J. Phys. Conf. Ser.",
volume = "513",
pages = "022034",
year = "2014"
}
@article{Jones:2017iww,
author = "Jones, C.D.",
editor = "Mount, Richard and Tull, Craig",
collaboration = "CMS",
title = "{CMS event processing multi-core efficiency status}",
doi = "10.1088/1742-6596/898/4/042008",
journal = "J. Phys. Conf. Ser.",
volume = "898",
number = "4",
pages = "042008",
year = "2017"
}
@unpublished{battaglia2018relational,
title={Relational inductive biases, deep learning, and graph networks},
author={Peter W. Battaglia and Jessica B. Hamrick and Victor Bapst and Alvaro Sanchez-Gonzalez and Vinicius Zambaldi and Mateusz Malinowski and Andrea Tacchetti and David Raposo and Adam Santoro and Ryan Faulkner and Caglar Gulcehre and Francis Song and Andrew Ballard and Justin Gilmer and George Dahl and Ashish Vaswani and Kelsey Allen and Charles Nash and Victoria Langston and Chris Dyer and Nicolas Heess and Daan Wierstra and Pushmeet Kohli and Matt Botvinick and Oriol Vinyals and Yujia Li and Razvan Pascanu},
year={2018},
eprint={1806.01261},
archivePrefix={arXiv},
primaryClass={cs.LG},
note={Preprint}
}
@inproceedings{bn,
author = {Sergey Ioffe and
Christian Szegedy},
title = {Batch Normalization: Accelerating Deep Network Training by Reducing
Internal Covariate Shift},
archivePrefix = {arXiv},
eprint = {1502.03167},
pages = {448},
year = {2015},
editor = {Francis Bach and David Blei},
volume = {37},
booktitle = "32nd International Conference on Machine Learning",
address = {Lille, France},
month = {07},
publisher = {PMLR},
url = {http://proceedings.mlr.press/v37/ioffe15.html},
}
@incollection{Duarte:2020ngm,
author = "Duarte, Javier and Vlimant, Jean-Roch",
editor = "Paolo Calafiura and David Rousseau and Kazuhiro Terao",
title = "Graph neural networks for particle tracking and reconstruction",
eprint = "2012.01249",
archivePrefix = "arXiv",
primaryClass = "hep-ph",
month = "12",
year = "2020",
booktitle = "{Artificial Intelligence for High Energy Physics}",
publisher = "World Scientific Publishing",
journal = "Int. J. Mod. Phys. A",
note = "Submitted to \emph{Int. J. Mod. Phys. A}",
keywords = {career,recent},
contributioncodes = {13},
doi={10.1142/12200},
}
@inproceedings{gnnexplainer,
author = {Ying, Zhitao and Bourgeois, Dylan and You, Jiaxuan and Zitnik, Marinka and Leskovec, Jure},
booktitle = {Advances in Neural Information Processing Systems},
editor = {H. Wallach and H. Larochelle and A. Beygelzimer and F. d\textquotesingle Alch\'{e}-Buc and E. Fox and R. Garnett},
publisher = {Curran Associates, Inc.},
title = {GNNExplainer: Generating Explanations for Graph Neural Networks},
volume = {32},
year = {2019},
eprint={1903.03894},
archivePrefix={arXiv},
primaryClass={cs.LG}
}