-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathcart_pole_policy_grad.py
117 lines (74 loc) · 2.64 KB
/
cart_pole_policy_grad.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
import gym
import numpy as np
import torch
import torch.nn as nn
import torch.nn.functional as F
import torch.optim as optim
import matplotlib.pyplot as plt
from torch.distributions import Categorical
env = gym.make('CartPole-v0')
class Policy(nn.Module):
def __init__(self, layers):
super(Policy, self).__init__()
self.hidden = nn.ModuleList()
for n_i, n_o in zip(layers, layers[1:]):
self.hidden.append(nn.Linear(n_i, n_o))
self.save_log_probs = []
self.save_rewards = []
def forward(self, x):
L = len(self.hidden)
for(l, linear_transform) in zip(range(L), self.hidden):
if l < L - 1:
x = F.relu(linear_transform(x))
else:
x = F.softmax(linear_transform(x), dim=1)
return x
layers = [4, 10, 10, 2]
policy = Policy(layers)
optimizer = optim.Adam(policy.parameters(), lr=1e-3)
def SelectAction(state):
state = torch.from_numpy(state).float().unsqueeze(0)
probs = policy(state)
m = Categorical(probs)
action = m.sample()
policy.save_log_probs.append(m.log_prob(action))
return action.item()
def FinishEpisode(gamma, eps):
R, policy_loss, rewards = 0, [], []
for r in policy.save_rewards[::-1]:
R = r + gamma * R
rewards.insert(0, R)
rewards = torch.tensor(rewards)
rewards = (rewards - rewards.mean()) / (rewards.std() + eps)
for log_prob, reward in zip(policy.save_log_probs, rewards):
policy_loss.append(-log_prob * reward)
optimizer.zero_grad()
policy_loss = torch.cat(policy_loss).sum()
policy_loss.backward()
optimizer.step()
del policy.save_rewards[:]
del policy.save_log_probs[:]
def PlotRunningAverage(totalrewards):
N = len(totalrewards)
running_avg = np.empty(N)
for t in range(N):
running_avg[t] = totalrewards[max(0, t - 100):(t + 1)].mean()
plt.plot(running_avg)
plt.title("Running Average")
plt.show()
N , gamma, eps = 1000, 0.95, 1e-8
totalrewards = np.empty(N)
for n in range(N):
state = env.reset()
totalreward, i, done = 0, 0, False
while not done and i < 10000:
action = SelectAction(state)
state, reward, done, _ = env.step(action)
totalreward += reward
policy.save_rewards.append(reward)
i += 1
totalrewards[n] = totalreward
FinishEpisode(gamma, eps)
if (n + 1) % 100 == 0:
print("Average reward for last 100 episodes:", totalrewards[n - 99:n + 1].mean())
PlotRunningAverage(totalrewards)