-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathRunModel.m
72 lines (65 loc) · 2.47 KB
/
RunModel.m
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
function [final_param, cost_train, subsets] = RunModel(data, param_model)
% Training and testing data selection
if param_model.mode == 1
m_train = 8*param_model.train_samples_per_target;
time = size(data.X,3);
x_train = zeros(size(data.X,1),m_train,time);
y_train = zeros(2,m_train,time);
index_train = zeros(1,m_train);
x_test = zeros(size(data.X,1),size(data.X,2)-m_train,time);
y_test = zeros(2,size(data.X,2)-m_train,time);
index_test = zeros(1,size(data.X,2)-m_train);
target_counter = zeros(1,8);
counter_train = 0;
counter_test = 0;
for i = 1:size(data.X,2)
for j = 1:8
if j == data.targets(i)
if target_counter(j) < param_model.train_samples_per_target
target_counter(j) = target_counter(j) + 1;
counter_train = counter_train + 1;
x_train(:,counter_train,:) = data.X(:,i,:);
for k = 1:2
for l = 1:time
y_train(k,counter_train,l) = data.Y(k,i,l);
end
end
index_train(counter_train) = i;
else
counter_test = counter_test + 1;
x_test(:,counter_test,:) = data.X(:,i,:);
for k = 1:2
for l = 1:time
y_test(k,counter_test,l) = data.Y(k,i,l);
end
end
index_test(counter_test) = i;
end
end
end
end
elseif param_model.mode == 2
x_train = data.x_train;
y_train = data.y_train;
end
% Training
[final_param, cost_train] = LSTM_train(x_train, y_train, ...
param_model.mini_batch_size, param_model.num_epochs, ...
param_model.n_hidden, param_model.beta_1, param_model.beta_2, ...
param_model.epsilon, param_model.learning_rate, ...
param_model.optimization, param_model.lambda, ...
param_model.stop_condition, param_model.connectivity, ...
param_model.network_model,param_model.links, ...
param_model.correlation_reg);
% Subsets:
if param_model.mode == 1
subsets.train.X = x_train;
subsets.train.Y = y_train;
subsets.train.index = index_train;
subsets.test.X = x_test;
subsets.test.Y = y_test;
subsets.test.index = index_test;
elseif param_model.mode == 2
subsets = [];
end
end