-
Notifications
You must be signed in to change notification settings - Fork 7
/
Copy pathexplanations.py
352 lines (284 loc) · 12.2 KB
/
explanations.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
# %%
from emutils.imports import *
from emutils.utils import (attrdict, in_ipynb, pandas_max, load_pickle, save_pickle, notebook_fullwidth)
from emutils.file import (
compute_or_load,
ComputeRequest,
)
from cfshap.utils.preprocessing import MultiScaler
from cfshap.utils.parallel.utils import max_cpu_count
from utils import *
from explainers import create_explainers
# Suppress warnings
import warnings
# warnings.filterwarnings(action="error", category=RuntimeWarning)
warnings.simplefilter(action='ignore', category=FutureWarning)
# Suppress scientific notation
# np.set_printoptions(suppress=True)
np.seterr(all='raise')
pandas_max(100, 200)
notebook_fullwidth()
# %%
from constants import DATA_DIR, MODEL_DIR, EXPLANATIONS_DIR
parser = ArgumentParser(sys.argv)
# General
parser.add_argument('--dataset', type=str, default='heloc', choices=['heloc', 'lendingclub', 'wines'], required=False)
parser.add_argument('--data_version', type=str, default="v2")
parser.add_argument('--data_path', type=str, default=DATA_DIR, required=False)
parser.add_argument('--random_state', type=int, default=2021, required=False)
# Model
parser.add_argument('--model_path', type=str, default=MODEL_DIR)
parser.add_argument('--model_type', type=str, default='xgb')
parser.add_argument('--model_version', type=str, default='v5')
# Results
parser.add_argument('--explanations_path', type=str, default=EXPLANATIONS_DIR)
parser.add_argument('--results_version', type=str, default='v5_close')
# Experiments
parser.add_argument('--nb_samples', type=int, default=2000, required=False)
parser.add_argument('--override', dest='override', action='store_true', default=False)
parser.add_argument('--close', type=float, default=None, required=False)
parser.add_argument('--far', type=float, default=None, required=False)
parser.add_argument('--monotonic', action='store_true', default=False)
parser.add_argument('--no-backgrounds', dest='backgrounds', action='store_false', default=True)
args, unknown = parser.parse_known_args()
args = attrdict(vars(args))
os.makedirs(args.explanations_path, exist_ok=True)
if '_test' in args.results_version:
args.nb_samples = 10
args.override = True
if 'bivariate' in args.dataset:
args.override = True
args.close = .2
if 'close' in args.results_version and args.close is None:
print(args)
raise ValueError('Forgot close?')
if 'far' in args.results_version and args.far is None:
print(args)
raise ValueError('Forgot far?')
if 'far' in args.results_version and args.close is not None:
print(args)
raise ValueError('Forgot to remove close?')
if 'close' in args.results_version and args.far is not None:
print(args)
raise ValueError('Forgot to remove far?')
# Show graphs and stuff or not?
args.show = in_ipynb()
print(args)
# %%
# FILE NAMES
# -> Data
DATA_RUN_NAME = f"{args.dataset}_D{args.data_version}"
FEATURES_FILENAME = f"{args.data_path}/{DATA_RUN_NAME}_features.pkl"
CLASSES_FILENAME = f"{args.data_path}/{DATA_RUN_NAME}_classes.pkl"
TRENDS_FILENAME = f"{args.data_path}/{DATA_RUN_NAME}_trends.pkl"
# REFPOINT_FILENAME = f"{args.data_path}/{DATA_RUN_NAME}_ref.pkl"
# MEDIAN_FILENAME = f"{args.data_path}/{DATA_RUN_NAME}_med.pkl"
# MEDIANGOOD_FILENAME = f"{args.data_path}/{DATA_RUN_NAME}_medgood.pkl"
# MEAN_FILENAME = f"{args.data_path}/{DATA_RUN_NAME}_mean.pkl"
# MEANGOOD_FILENAME = f"{args.data_path}/{DATA_RUN_NAME}_meangood.pkl"
# -> Model
MODEL_RUN_NAME = f"{DATA_RUN_NAME}M{args.model_version}_{args.model_type}"
MODELWRAPPER_FILENAME = f"{args.model_path}/{MODEL_RUN_NAME}_model.pkl"
BOOSTER_FILENAME = f"{args.model_path}/{MODEL_RUN_NAME}_model.bin"
TXTMODEL_FILENAME = f"{args.model_path}/{MODEL_RUN_NAME}_model.txt"
PARAMS_FILENAME = f"{args.model_path}/{MODEL_RUN_NAME}_params.json"
BAD_FILENAME = f"{args.model_path}/{MODEL_RUN_NAME}_bad.pkl"
GOOD_FILENAME = f"{args.model_path}/{MODEL_RUN_NAME}_good.pkl"
# -> Results
def result_filename(result_name, ext='pkl'):
return f"{args.explanations_path}/{MODEL_RUN_NAME}_{result_name}{args.results_version}.{ext}"
# %% [markdown]
# # Load data and model
# Let's load all the data and the trained model.
# We load here also the manifold information.
# %%
X, y, X_train, X_test, y_train, y_test = load_data(args)
feature_names = load_pickle(FEATURES_FILENAME)
class_names = load_pickle(CLASSES_FILENAME)
feature_trends_ = load_pickle(TRENDS_FILENAME)
feature_trends = feature_trends_ if args.monotonic else None
# ref_points = dict(
# med=load_pickle(MEDIAN_FILENAME),
# medgood=load_pickle(MEDIANGOOD_FILENAME),
# meangood=load_pickle(MEANGOOD_FILENAME),
# mean=load_pickle(MEAN_FILENAME),
# )
multiscaler = MultiScaler(X_train)
model = load_pickle(MODELWRAPPER_FILENAME)
preds__ = model.predict(X.values)
X_good = X[preds__ == 0]
X_bad = X[preds__ == 1]
if args.close is not None or args.far is not None:
bad_preds_ = model.predict_proba(X_bad.values)[:, 1]
bad_close_prob_ = np.sort(bad_preds_)[int(round(args.close *
len(bad_preds_)))] if args.close is not None else np.inf
bad_far_prob_ = np.flip(np.sort(bad_preds_))[int(round(args.far *
len(bad_preds_)))] if args.far is not None else -np.inf
closeandfar_mask = (bad_preds_ < bad_close_prob_) & (bad_preds_ > bad_far_prob_)
X_bad_filtered = X_bad[closeandfar_mask]
else:
X_bad_filtered = X_bad
X_explain = X_bad_filtered.sample(n=min(len(X_bad_filtered), args.nb_samples), random_state=args.random_state)
index_explain = X_explain.index.values
X_explain = X_explain.values
print(f"Bad : {X_bad.shape}")
print(f"Good : {X_good.shape}")
print(f'Bad FILTERED (close and far) : {X_bad_filtered.shape}')
print(f'Explain : {X_explain.shape}')
# Set number of threads for efficiency.
model.get_booster().set_param({'nthread': min(15, max_cpu_count() - 1)})
# %% [markdown]
# # Explainers
# Let's set up all the explainers that we want to use
# %%
# Explainers
EXPLAINERS = create_explainers(
X=X_train,
y=y_train,
model=model,
ref_points=[],
multiscaler=multiscaler,
feature_names=feature_names,
feature_trends=feature_trends, # None by default
random_state=args.random_state,
)
# %% [markdown]
# Let's check that everything is working with the explainers
# %%
def is_xp_col(col):
if not isinstance(col, str):
return True
if col in ['pred', 'prob', 'x', 'x_prime', 'epsilon', 'eps', 'x_nonrecoded']:
return False
if any([col.endswith(c) for c in ['_X', '_tweaks', '_X_len', '_Xaggr']]):
return False
return True
def xps_to_df(xp_result, features_info=None, sort=True):
df = pd.DataFrame({k: v for k, v in xp_result.items() if is_xp_col(k)})
for col in df:
df[col + "_rank"] = (-1 * df[col]).rank()
if 'x' in xp_result:
df['x'] = xp_result['x']
if sort:
df = df.reindex(sorted(df.columns), axis=1)
if features_info is not None:
df = pd.concat([df, features_info], axis=1)
return df
if True:
x = X_explain[1]
assert model.predict([x])[0] == 1, "Not a bad sample"
pred = model.predict([x])
prob = model.predict_proba([x])
print(x, pred, prob)
explanations = {name: explainer(x.reshape(1, -1)) for name, explainer in EXPLAINERS.items()}
trends = {name: explanations[name]['trends'][0] for name in EXPLAINERS.keys()}
values = {name: explanations[name]['values'][0] for name in EXPLAINERS.keys()}
backgrounds = {name: explanations[name]['backgrounds'][0] for name in EXPLAINERS.keys()}
trends['DATA'] = feature_trends_
pdf = xps_to_df(values)
tdf = xps_to_df(trends)
pdf = pdf[[c for c in pdf.columns.values if '_rank' not in c]]
tdf = tdf[[c for c in tdf.columns.values if '_rank' not in c]]
pandas_max(200, 200)
display(pdf.T)
display(tdf.T)
# %% [markdown]
# Let's check that everything is working fine...
# %%
for name, back in backgrounds.items():
if np.any(np.isnan(back)):
print("This Explainer has some NAN counterfactuals:", name)
# print(back)
# %% [markdown]
# # Explain
# Let's now run the explainer on the sample of the dataset
# %%
explanations_cache = None
def compute_explanations(X, index, model, explainers):
global explanations_cache
metadata_array = compute_or_load(result_filename('meta_all'), dict, request=ComputeRequest.LOAD_OR_RUN_NOSAVE)
# We do not load them from here but from the original results (below)
values_arrays = {}
trends_arrays = {}
backgrounds_arrays = {}
X_ = np.asarray(X)
pred_ = model.predict(X)
prob_ = model.predict_proba(X)[:, 1]
if 'x' in metadata_array:
metaX = metadata_array['x']
assert np.all(metaX == X_[:len(metaX)])
if 'index' in metadata_array:
metaindex = metadata_array['index']
assert np.all(metaindex == index[:len(metaX)])
if 'pred' in metadata_array:
metapred = metadata_array['pred']
assert np.all(metapred == pred_[:len(metapred)])
if 'prob' in metadata_array:
metaprob = metadata_array['prob']
assert np.all(metaprob == prob_[:len(metaprob)])
metadata_array['x'] = X_
metadata_array['pred'] = pred_
metadata_array['prob'] = prob_
metadata_array['manifold'] = None
metadata_array['index'] = index
# Compute new explanations
iters = tqdm(explainers.items())
for name, explainer in iters:
iters.set_description(name)
def __explain():
global explanations_cache
explanations = explanations_cache = explainer(X_)
return explanations.values, explanations.trends
def __backgrounds():
global explanations_cache
if explanations_cache is not None:
backgrounds = explanations_cache.backgrounds
else:
backgrounds = explainer.get_backgrounds(X_)
# Check if they are all the same
all_same = True
prev = backgrounds[0]
for i in range(1, len(backgrounds)):
curr = backgrounds[i]
if prev.shape != curr.shape or np.any(prev != curr):
all_same = False
break
prev = curr
# Save them (None if repeated)
if all_same:
return [backgrounds[0]] + [None] * (len(backgrounds) - 1)
else:
return backgrounds
# Compute values and trends
values_arrays[name], trends_arrays[name] = compute_or_load(
result_filename(f'xps_{name}'),
lambda: __explain(),
request=ComputeRequest.OVERRIDE if args.override else ComputeRequest.LOAD_OR_RUN,
verbose=1,
)
# Assert that explanation method is still coherent
e = explainer(X_[0].reshape(1, -1))
v, t = e.values[0], e.trends[0]
v0, t0 = values_arrays[name][0], trends_arrays[name][0]
assert np.all((np.abs(v - v0) < 1e-8)
| (np.isnan(v) & np.isnan(v0))), f'Feature attribution is not coherent! ({v0} != {v})'
assert np.all((np.abs(t - t0) < 1e-8) | (np.isnan(v) & np.isnan(v0))), f'Trend is not coherent! ({t0} != {t})'
# Compute backgrounds
if args.backgrounds:
backgrounds_arrays[name] = compute_or_load(
result_filename(f'xps_{name}_B'),
lambda: __backgrounds(),
request=ComputeRequest.OVERRIDE if args.override else ComputeRequest.LOAD_OR_RUN,
verbose=1,
)
explanations_cache = None
_ = save_pickle(metadata_array, result_filename('meta_all'))
_ = save_pickle(values_arrays, result_filename('values_all'))
_ = save_pickle(trends_arrays, result_filename('trends_all'))
_ = save_pickle(backgrounds_arrays, result_filename('backgrounds_all'))
return metadata_array, values_arrays, trends_arrays, backgrounds_arrays
# Compute explanations
metadata_array, values_arrays, trends_arrays, backgrounds_arrays = compute_explanations(X=X_explain,
index=index_explain,
model=model,
explainers=EXPLAINERS)