-
Notifications
You must be signed in to change notification settings - Fork 7
/
Copy pathutils.py
349 lines (283 loc) · 11.4 KB
/
utils.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
"""General utilities for the experiments."""
import logging
from collections import ChainMap
from typing import Union, List, Tuple, Any
import re
import os
import numpy as np
import scipy as sp
import pandas as pd
import scipy.stats
import scipy.linalg
import seaborn as sns
import matplotlib.pyplot as plt
import matplotlib as mpl
import matplotlib.cm
from emutils.utils import keydefaultdict, attrdict
from emutils.file import load_pickle, save_pickle
def safe_mean(a):
return np.mean(a[~np.isnan(a)])
def replace_nan(a, replace_with=1.0):
return np.where(~np.isnan(a), a, replace_with)
def safe_std(a):
return np.std(a[~np.isnan(a)])
def failure_nan(a):
return (np.isnan(a).sum() / len(a))
DATASET_NAMES = keydefaultdict(
lambda k: k, {
'heloc': 'HELOC (Home Equity Line of Credit)',
'lendingclub': 'Lending Club (2007-2018)',
'wines': 'Wine Quality (White)',
})
MARKERS_SHAPES = ['s', 'o', '^', '*', 'P', 'D', '<', '>', 'v', '.', 'h', 'H', 'X', '8', '1', '2', '3', '4', '+', 'x']
def get_markers(n):
markers_ = []
while True:
if len(markers_) == n:
break
markers_ += MARKERS_SHAPES[:(n - len(markers_))]
return markers_
def get_colors(n, cmap=None):
if cmap is not None or n > 20:
return [tuple(c) for c in mpl.cm.get_cmap(cmap)(np.linspace(0, 1 - 1 / n, n))[:, :-1]]
elif n <= 10:
return list(mpl.cm.get_cmap('tab10').colors[:n])
elif n <= 20:
return list(mpl.cm.get_cmap('tab20').colors[:n])
def dataset_to_name(dataset):
return DATASET_NAMES[dataset]
def model_version_to_name(model_version):
return "Monotonic" if 'mono' in model_version else "Non-Monotonic"
def result_version_to_name(result_version):
if '_test' in result_version:
return 'Test Sample'
elif 'iperclose' in result_version:
return 'Iper Close (<2.5%)'
if 'superclose' in result_version:
return 'Mega Close (<10%)'
if 'veryclose' in result_version:
return 'Very Close (<20%)'
elif 'close' in result_version:
return 'Close (<50%)'
elif 'veryfar' in result_version:
return 'Very Far (>80%)'
elif 'far' in result_version:
return 'Far (>50%)'
else:
return 'All'
METHOD_NAMES = {
('SHAP', 'base_med'): 'SHAP Median',
('SHAP', 'base_mean'): 'SHAP Mean',
('SHAP', 'base_medgood'): 'SHAP Median Good',
('SHAP', 'base_meangood'): 'SHAP Mean Good',
('SHAP', 'training'): 'SHAP TRAIN',
('SHAP', 'diff_pred'): 'SHAP D-PRED',
('SHAP', 'cone'): 'SHAP D-PRED $^*$',
('SHAP', 'diff_label'): 'SHAP D-LAB',
('SHAP', 'base_mean'): 'SHAP D-MEAN',
('SHAP', 'training_100'): 'SHAP TRAIN (n = 100)',
('SHAP', 'diff_pred_100'): 'SHAP D-PRED (n = 100)',
('SHAP', 'diff_label_100'): 'SHAP D-LAB (n = 100)',
}
def method_to_name(method, trend=True, norm=True, details=True):
if isinstance(method, str):
method = ('SHAP', method, None)
if isinstance(method, tuple) and len(method) == 2:
method = tuple(list(method) + [None])
if len(method) != 3:
return str(method)
m_type, m_name, m_trend = method
method2 = method[:2]
def _method_to_name():
mname = method2
if mname in METHOD_NAMES:
return METHOD_NAMES[method2]
if m_type == 'SHAP':
if "_FREQ" in m_name:
return "FREQ"
elif "_DIST" in m_name:
return "DIST"
elif 'knn' in m_name:
return f"CF-SHAP ${int(re.findall('knn([0-9]+)_.*', m_name)[0])}$-NN"
else:
return f'Unknown ({m_name})'
def _method_to_trend():
if m_trend is None or trend is False:
return ""
elif m_trend == 'random':
return " R"
elif m_trend == 'local':
return " L"
elif m_trend == 'global':
return " G"
else:
return " UnknTrend"
def method_norm():
if norm:
m_norm = re.findall('.*_[a-z](L[0-9])', m_name)
m_norm = m_norm[0] if m_norm else ""
m_trans = re.findall('.*_([a-z])L[0-9]', m_name)
m_trans = m_trans[0].upper() if m_trans else ""
if m_norm and m_trans:
return m_trans + "+" + m_norm
else:
return m_trans + m_norm
else:
return ""
def method_cone():
if 'cone' in m_name:
return "$^*$"
else:
return ""
def method_diverse():
if 'diverse' in m_name:
return r"$^{\dagger}$"
else:
return ""
name_ = _method_to_name()
name_ += method_norm()
name_ += method_cone()
name_ += method_diverse()
name_ += _method_to_trend()
if not details:
# Remove parenthesis
name_ = re.sub(r"(\ )?\(.*?\)", "", name_)
return name_
def result_filename(args,
result_name,
dataset=None,
data_version=None,
model_version=None,
model_type=None,
results_version=None,
ext='pkl'):
if results_version is None:
results_version = args.results_version
mrn = model_run_name(args,
dataset=dataset,
data_version=data_version,
model_version=model_version,
model_type=model_type)
return f"{args.results_path}/{mrn}_{result_name}{results_version}.{ext}"
def model_run_name(args, dataset=None, data_version=None, model_version=None, model_type=None):
if dataset is None:
dataset = args.dataset
if data_version is None:
data_version = args.data_version
if model_version is None:
model_version = args.model_version
if model_type is None:
model_type = args.model_type
return f"{dataset}_D{data_version}M{model_version}_{model_type}"
def load_explanations(args,
dataset=None,
data_version=None,
model_version=None,
model_type=None,
results_version=None,
backgrounds=False):
e = attrdict(
metadata=load_pickle(result_filename(args,
result_name='meta_all',
dataset=dataset,
data_version=data_version,
model_version=model_version,
model_type=model_type,
results_version=results_version),
verbose=0),
values=load_pickle(result_filename(args,
result_name='values_all',
dataset=dataset,
data_version=data_version,
model_version=model_version,
model_type=model_type,
results_version=results_version),
verbose=0),
trends=load_pickle(result_filename(args,
result_name='trends_all',
dataset=dataset,
data_version=data_version,
model_version=model_version,
model_type=model_type,
results_version=results_version),
verbose=0),
)
if backgrounds:
e.backgrounds = load_pickle(result_filename(args,
result_name='backgrounds_all',
dataset=dataset,
data_version=data_version,
model_version=model_version,
model_type=model_type,
results_version=results_version),
verbose=0),
return e
def profiling_filename(
args,
dataset=None,
data_version=None,
model_version=None,
model_type=None,
ext='pkl',
):
mrn = model_run_name(args,
dataset=dataset,
data_version=data_version,
model_version=model_version,
model_type=model_type)
return f"{args.results_path}/{mrn}_profiling.{ext}"
def load_data(args, dataset=None, data_version=None):
if dataset is None:
dataset = args.dataset
if data_version is None:
data_version = args.data_version
DATA_RUN_NAME = f"{dataset}_D{data_version}"
TRAIN_X_FILENAME = f"{args.data_path}/{DATA_RUN_NAME}_Xtrain.pkl"
TEST_X_FILENAME = f"{args.data_path}/{DATA_RUN_NAME}_Xtest.pkl"
TRAIN_Y_FILENAME = f"{args.data_path}/{DATA_RUN_NAME}_ytrain.pkl"
TEST_Y_FILENAME = f"{args.data_path}/{DATA_RUN_NAME}_ytest.pkl"
X_train = load_pickle(TRAIN_X_FILENAME)
X_test = load_pickle(TEST_X_FILENAME)
y_train = load_pickle(TRAIN_Y_FILENAME)
y_test = load_pickle(TEST_Y_FILENAME)
X = pd.concat([X_train, X_test], axis=0)
y = pd.concat([y_train, y_test], axis=0)
X = X.reset_index(drop=True)
y = y.reset_index(drop=True)
return X, y, X_train, X_test, y_train, y_test
def load_data_and_model(dataset, data_version, model_version, args):
DATA_RUN_NAME = f"{dataset}_D{data_version}"
MODEL_RUN_NAME = f"{DATA_RUN_NAME}M{model_version}_xgb"
TRAIN_X_FILENAME = f"{args.data_path}/{DATA_RUN_NAME}_Xtrain.pkl"
TEST_X_FILENAME = f"{args.data_path}/{DATA_RUN_NAME}_Xtest.pkl"
TRAIN_Y_FILENAME = f"{args.data_path}/{DATA_RUN_NAME}_ytrain.pkl"
TEST_Y_FILENAME = f"{args.data_path}/{DATA_RUN_NAME}_ytest.pkl"
MODELWRAPPER_FILENAME = f"{args.model_path}/{MODEL_RUN_NAME}_model.pkl"
X_train = load_pickle(TRAIN_X_FILENAME, verbose=0)
X_test = load_pickle(TEST_X_FILENAME, verbose=0)
y_train = load_pickle(TRAIN_Y_FILENAME, verbose=0)
y_test = load_pickle(TEST_Y_FILENAME, verbose=0)
X = pd.concat([X_train, X_test], axis=0)
y = pd.concat([y_train, y_test], axis=0)
model = load_pickle(MODELWRAPPER_FILENAME, verbose=0)
return attrdict(
model=model,
X=X,
y=y,
X_train=X_train,
X_test=X_test,
y_train=y_train,
y_test=y_test,
)
def plt_arrow(*args, **kwargs):
if 'label' in kwargs:
plt.scatter(
[],
[],
marker=r'$\rightarrow$',
label=kwargs['label'],
color=kwargs['color'] if 'color' in kwargs else (kwargs['facecolor'] if 'facecolor' in kwargs else 'black'),
s=100,
) # dummy scatter to add an item to the legend
del kwargs['label']
return plt.arrow(*args, **kwargs)