-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathrnn.py
29 lines (23 loc) · 1.02 KB
/
rnn.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
import torch
from torch import nn
from torch.autograd import Variable
class RNN(nn.Module):
def __init__(self, input_size, layer_size, output_size, computing_device, n_layers=1):
super(RNN, self).__init__()
self.n_layers = n_layers
self.layer_size = layer_size
self.computing_device = computing_device
self.reset_state()
self.rnn = nn.RNN(input_size=input_size,
hidden_size=layer_size,
num_layers=n_layers,
batch_first=True).to(self.computing_device)
self.linear = nn.Linear(layer_size, output_size).to(self.computing_device)
nn.init.xavier_normal_(self.linear.weight)
def __call__(self, x):
x, h_t = self.rnn(x, self.h_0)
x = self.linear(x)
self.h_0 = Variable(h_t, requires_grad=False)
return x
def reset_state(self):
self.h_0 = Variable(torch.zeros(self.n_layers, 1, self.layer_size).to(self.computing_device), requires_grad=False)