-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathTable 1 Descriptive Statistics.R
591 lines (465 loc) · 21 KB
/
Table 1 Descriptive Statistics.R
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
# load packages
library(dplyr)
library(tidyr)
library(writexl)
library(readxl)
#=====================================================================================
#
# Code chunk 1- ReCHARGE variables recoding and cleaning
#
#=====================================================================================
# load data for ReCHARGE
getwd()
setwd("/Users/gekuodza/Documents/GitHub/NewbornBlood_DNAmethylation_ASD")
DBS_Metadata_original <- read_excel("DBS_Metadata_original.xlsx")
ASDandTDChildrenwith <- read.csv("ASDandTDChildrenwithDNAfromDBS_M5514_13NOV23(ASDandTDChildrenwithDNAfromDBS_).csv")
ASDandTDChildrenwith$Batch
# Filter for "Jules" only
jules_df <- subset(ASDandTDChildrenwith, Batch == "Jules")
# View the new dataset
print(jules_df)
colnames(jules_df)
colnames(DBS_Metadata_original)
# Combine the two datasets by the "IBC" column
combined_df_children_parents <- merge(jules_df, DBS_Metadata_original, by = "IBC", all = TRUE)
# View the combined dataset
print(combined_df_children_parents)
combined_df_children_parents$IBC
combined_df_children_parents$subject_id
# Remove rows where 'subject_id' is NA
combined_df_children_parents <- combined_df_children_parents[!is.na(combined_df_children_parents$subject_id), ]
rownames(combined_df_children_parents) <- combined_df_children_parents$IBC
colnames(combined_df_children_parents)
# View the dataset
print(combined_df_children_parents)
write_xlsx(combined_df_children_parents, path = "combined_df_children_parents.xlsx")
combined_df_children_parents$ChildRace_5cat
# Convert 'correctsex.x' to a factor with levels "M" and "F"
combined_df_children_parents$correctsex.x <- factor(combined_df_children_parents$correctsex.x,
levels = c("M", "F"),
labels = c("Male", "Female"))
# verify changes
str(combined_df_children_parents$correctsex.x)
# 'ChildRace_5cat' as a factor with specified labels
combined_df_children_parents$ChildRace_5cat <- factor(
combined_df_children_parents$ChildRace_5cat,
levels = c(1, 2, 4, 6, 9),
labels = c("Non-hispanic white", "Non-hispanic black", "Non-hispanic asian", "Hispanic any race", "Multi-racial/Other")
)
# Verify the changes
str(combined_df_children_parents$ChildRace_5cat)
# 'MomEdu_4cat' as a factor with specified labels
combined_df_children_parents$MomEdu_4cat <- factor(
combined_df_children_parents$MomEdu_4cat,
levels = c(2, 3, 4, 5),
labels = c("High school diploma/GED or less",
"Some college (incl. vocational, 2-yr degree)",
"Bachelor degree",
"Graduate or professional degree")
)
# Verify the changes
str(combined_df_children_parents$MomEdu_4cat)
# DadEdu as a factor with specified levels
combined_df_children_parents$DadEdu_4cat <- factor(
combined_df_children_parents$DadEdu_4cat,
levels = c(2,3,4,5),
labels = c("High School diploma/GED or lesss",
"Some college (incl. vocational, 2-yr degree)",
"Bachelor degree",
"Graduate or professional degree")
)
# verfiy changes
str(combined_df_children_parents$DadEdu_4cat)
# "payment delivery" as a factor
combined_df_children_parents$PaymentDelivery.x <- factor(
combined_df_children_parents$PaymentDelivery.x,
levels = c(1,2),
labels = c("Government Program/No insurance",
"Insurance")
)
#verify changes
str(combined_df_children_parents$PaymentDelivery.x)
#OwnHome as a factor
combined_df_children_parents$OwnHome <- factor(
combined_df_children_parents$OwnHome,
levels = c(0,1),
labels = c("No", "Yes")
)
#verfiy changes
str(combined_df_children_parents$OwnHome)
#Mom race as a factor
combined_df_children_parents$MomRace_4cat <- factor(
combined_df_children_parents$MomRace_4cat,
levels = c(1,2,4,9),
labels = c("Non-hispanic white",
"Non-hispanic black",
"Non-hispanic asian",
"Multi-racial/Other")
)
#verfiy changes
str(combined_df_children_parents$MomRace_4cat)
#Dad race as a factor
combined_df_children_parents$DadRace_4cat <- factor(
combined_df_children_parents$DadRace_4cat,
levels = c(1,2,4,9),
labels = c("Non-hispanic white",
"Non-hispanic black",
"Non-hispanic asian",
"Multi-racial/Other")
)
#verify changes
str(combined_df_children_parents$DadRace_4cat)
#ASD dx as a factor
combined_df_children_parents$dx2.x <- factor(
combined_df_children_parents$dx2.x,
levels = c(2,5),
labels = c("ASD", "Typically developing")
)
str(combined_df_children_parents$dx2.x)
#=====================================================================================
#
# Code chunk 2- ReCHARGE variables using dplyr and tidyr
#
#=====================================================================================
#structure
str(combined_df_children_parents$dx2.x)
#generates summary stats for all not separated by group
summary(combined_df_children_parents)
summary_CHARGE_all <- as.data.frame(summary(combined_df_children_parents))
write_xlsx(summary_CHARGE_all, path = "CHARGE_Summary_stats.xlsx")
#chec unique values
sapply(combined_df_children_parents [, c("correctsex.x", "ChildRace_5cat", "YOB.x", "AgeMomYrs",
"AgeDadYrs", "MomRace_4cat", "DadRace_4cat", "MomEdu_4cat",
"DadEdu_4cat", "PaymentDelivery.x", "OwnHome", "dx2.x")], unique)
#continous variables
continous_vars <- c("YOB.x", "AgeMomYrs", "AgeDadYrs")
#cat variables
categorical_vars <- c("correctsex.x", "ChildRace_5cat", "MomRace_4cat", "DadRace_4cat",
"MomEdu_4cat", "DadEdu_4cat", "PaymentDelivery.x", "OwnHome", "dx2.x")
#this function will generate descriptive statitistics for continuous and categorical variables
generate_statistics <- function(data, group_var, continuous_vars, categorical_vars) {
library(dplyr)
library(tidyr)
results <- list()
# Continuous variables
cont_results <- lapply(continuous_vars, function(var) {
stats <- data %>%
summarise(
mean_sd = sprintf("%.2f (%.2f)", mean(.data[[var]], na.rm = TRUE), sd(.data[[var]], na.rm = TRUE)),
median_min_max = sprintf("%.2f (%.2f, %.2f)", median(.data[[var]], na.rm = TRUE),
min(.data[[var]], na.rm = TRUE), max(.data[[var]], na.rm = TRUE))
)
# Perform tests
if (length(unique(data[[group_var]])) > 2) {
# ANOVA for multiple groups
anova_result <- aov(data[[var]] ~ as.factor(data[[group_var]]), data = data)
p_value <- summary(anova_result)[[1]][["Pr(>F)"]][1]
} else {
# t-test for two groups
t_test_result <- t.test(data[[var]] ~ as.factor(data[[group_var]]), data = data)
p_value <- t_test_result$p.value
}
# Combine stats and p-value
data.frame(Variable = var, mean_sd = stats$mean_sd,
median_min_max = stats$median_min_max,
p_value = sprintf("%.4f", p_value))
}) %>%
bind_rows()
results$continuous <- cont_results
# Categorical variables
cat_results <- lapply(categorical_vars, function(var) {
freq_table <- data %>%
count(.data[[var]], .data[[group_var]]) %>%
group_by(.data[[group_var]]) %>%
mutate(percent = n / sum(n) * 100) %>%
summarise(frequency = paste0(n, " (", sprintf("%.1f", percent), "%)"), .groups = "drop")
# Perform tests
if (any(table(data[[var]], data[[group_var]]) < 5)) {
# Fisher's exact test for sparse data
fisher_result <- fisher.test(table(data[[var]], data[[group_var]]))
p_value <- fisher_result$p.value
} else {
# Chi-square test
chi_result <- chisq.test(table(data[[var]], data[[group_var]]))
p_value <- chi_result$p.value
}
# Combine frequency table and p-value
data.frame(Variable = var, frequency = paste(freq_table$frequency, collapse = "; "),
p_value = sprintf("%.4f", p_value))
}) %>%
bind_rows()
results$categorical <- cat_results
return(results)
}
CHARGE_descriptive_stats <- generate_statistics(data = combined_df_children_parents,
group_var = "dx2.x",
continuous_vars = continous_vars,
categorical_vars = categorical_vars)
# View results
(CHARGE_descriptive_stats$continuous)
CHARGE_descriptive_stats$categorical
results_list <- list(
Continuous = CHARGE_descriptive_stats$continuous,
Categorical = CHARGE_descriptive_stats$categorical
)
write_xlsx(results_list, path = "CHARGE_descriptive_stats.xlsx")
#=================================================================================
#
# Code chunk 3- CHDS variables recoding and cleaning
#
#=====================================================================================
#load your data
CHDS_F2 <- read_excel("CHDS F2.xlsx")
CHDS_F1 <- read_excel("CHDS F1.xlsx")
# Combine the two datasets by the "batchorder" column
CHDS_F1_and_F2 <- merge(CHDS_F2, CHDS_F1, by = "batchorder", all = TRUE)
rownames(CHDS_F1_and_F2) <- CHDS_F1_and_F2$batchorder
colnames(CHDS_F1_and_F2)
# Convert 'FSex' to a factor with levels "M" and "F"
CHDS_F1_and_F2$F2SEX <- factor(CHDS_F1_and_F2$F2SEX,
levels = c(0,1),
labels = c("Male", "Female"))
# verify changes
str(CHDS_F1_and_F2$F2SEX)
#Create new variable for mom race/ethnicity
CHDS_F1_and_F2$mom_race_new <- ifelse(
CHDS_F1_and_F2$`F1MOMRACE1 Words` == "White" & CHDS_F1_and_F2$`F1HISPMOM Words` == "not spanish/hispanic", 1,
ifelse(
CHDS_F1_and_F2$`F1MOMRACE1 Words` == "Black" & CHDS_F1_and_F2$`F1HISPMOM Words` == "not spanish/hispanic", 2,
ifelse(
(CHDS_F1_and_F2$`F1MOMRACE1 Words` %in% c("Asian-Chinese", "Filipino", "Chinese", "Asian-Unspecified")) &
CHDS_F1_and_F2$`F1HISPMOM Words` == "not spanish/hispanic", 3,
ifelse(
CHDS_F1_and_F2$`F1HISPMOM Words` %in% c("mexican/mexican-american/chicano", "puerto rican",
"other spanish/hispanic (born in the U.S.)", "central or south american"), 4,
ifelse(
CHDS_F1_and_F2$`F1MOMRACE1 Words` %in% c("Other-Specified", "Refused to state", "unknown") &
CHDS_F1_and_F2$`F1HISPMOM Words` == "not spanish/hispanic", 5,
NA )))))
# Convert mom_race_new to a factor with correct labels
CHDS_F1_and_F2$mom_race_new <- factor(CHDS_F1_and_F2$mom_race_new,
levels = 1:5,
labels = c("Non-hispanic white", "Non-hispanic black",
"Non-hispanic asian", "Hispanic",
"Multi-racial/Other"))
table(CHDS_F1_and_F2$mom_race_new)
sum(is.na(CHDS_F1_and_F2$mom_race_new))
#sample 49,74 I had to manually change for multiracial or other
CHDS_F1_and_F2$mom_race_new[49] <- "Multi-racial/Other"
CHDS_F1_and_F2$mom_race_new[74] <- "Multi-racial/Other"
CHDS_F1_and_F2$mom_race_new[139] <- "Non-hispanic asian"
CHDS_F1_and_F2$mom_race_new[167] <- "Hispanic"
#verfiy changes you made
sum(is.na(CHDS_F1_and_F2$mom_race_new))
#Create new variable for dad race/ethnicity
CHDS_F1_and_F2$dad_race_new <- ifelse(
CHDS_F1_and_F2$`F1FATHERRACE1 Words` == "White" & CHDS_F1_and_F2$`F1HISPFAT Words` == "not spanish/hispanic", 1,
ifelse(
CHDS_F1_and_F2$`F1FATHERRACE1 Words` == "Black" & CHDS_F1_and_F2$`F1HISPFAT Words` == "not spanish/hispanic", 2,
ifelse(
(CHDS_F1_and_F2$`F1FATHERRACE1 Words` %in% c("Asian-Japanese", "Asian-Chinese","Asian Indian (Excludes American Indian, Aleut, Eskimo)",
"Filipino", "Chinese", "Asian-Unspecified")) &
CHDS_F1_and_F2$`F1HISPFAT Words` == "not spanish/hispanic", 3,
ifelse(
CHDS_F1_and_F2$`F1HISPFAT Words` %in% c("mexican/mexican-american/chicano", "puerto rican",
"other spanish/hispanic (born in the U.S.)", "central or south american"), 4,
ifelse(
CHDS_F1_and_F2$`F1FATHERRACE1 Words` %in% c("American Indian", "Other-Specified", "Refused to state", "unknown") &
CHDS_F1_and_F2$`F1HISPFAT Words` == "not spanish/hispanic","unknown", 5
)))))
# Convert dad_race_new to a factor with correct labels
CHDS_F1_and_F2$dad_race_new <- factor(CHDS_F1_and_F2$dad_race_new,
levels = 1:5,
labels = c("Non-hispanic white", "Non-hispanic black",
"Non-hispanic asian", "Hispanic",
"Multi-racial/Other"))
str(CHDS_F1_and_F2$dad_race_new)
#sample 8 I had to manually change for multiracial or other
CHDS_F1_and_F2$dad_race_new[8] <- "Multi-racial/Other"
str(CHDS_F1_and_F2$dad_race_new)
#Mom education make a factor variable
CHDS_F1_and_F2$Mom_edu_new <- ifelse(
CHDS_F1_and_F2$`F1MOMEDU Words` %in% c("3 elementary or secondary" , "12 elementary or secondary", "9 elementary or secondary", "9th through 12th, no diploma",
"8 elementary or secondary", "6 elementary or secondary",
"11 elementary or secondary", "high school graduate/GED completed"),
2,
ifelse(
CHDS_F1_and_F2$`F1MOMEDU Words` %in% c("1 year of college", "2 years of college", "3 years of college",
"some college credit, but no degree", "associate degree"),
3,
ifelse(
CHDS_F1_and_F2$`F1MOMEDU Words` %in% c("4 years of college", "bachelor's degree"),
4,
ifelse(
CHDS_F1_and_F2$`F1MOMEDU Words` %in% c("5 or more years of college", "master's degree",
"graduate or professional degree"), 5,
NA_integer_ # Assign NA for unknown values
))))
# Convert the new variable to a factor with specified levels and labels
CHDS_F1_and_F2$Mom_edu_new <- factor(
CHDS_F1_and_F2$Mom_edu_new,
levels = c(2, 3, 4, 5),
labels = c("High school diploma/GED or less",
"Some college (incl. vocational, 2-yr degree)",
"Bachelor degree",
"Graduate or professional degree")
)
# Verify the changes
sum(CHDS_F1_and_F2$`F1MOMEDU Words` == "unknown", na.rm = TRUE)
sum(is.na(CHDS_F1_and_F2$Mom_edu_new))
table(CHDS_F1_and_F2$Mom_edu_new)
str(CHDS_F1_and_F2$Mom_edu_new)
#Dad education make a factor variable
CHDS_F1_and_F2$Dad_edu_new <- ifelse(
CHDS_F1_and_F2$`F1FATHEREDU Words` %in% c("12 elementary or secondary", "9 elementary or secondary", "9th through 12th, no diploma",
"8 elementary or secondary", "6 elementary or secondary", "3 elementary or secondary" ,
"11 elementary or secondary", "high school graduate/GED completed","10 elementary or secondary"),
2,
ifelse(
CHDS_F1_and_F2$`F1FATHEREDU Words` %in% c("1 year of college", "2 years of college", "3 years of college",
"some college credit, but no degree", "associate degree"),
3,
ifelse(
CHDS_F1_and_F2$`F1FATHEREDU Words` %in% c("4 years of college", "bachelor's degree"),
4,
ifelse(
CHDS_F1_and_F2$`F1FATHEREDU Words` %in% c("5 or more years of college", "master's degree",
"graduate or professional degree"), 5,
NA_integer_ # Assign NA for unknown values
))))
# Convert the new variable to a factor with specified levels and labels
CHDS_F1_and_F2$Dad_edu_new <- factor(
CHDS_F1_and_F2$Dad_edu_new,
levels = c(2, 3, 4, 5),
labels = c("High school diploma/GED or less",
"Some college (incl. vocational, 2-yr degree)",
"Bachelor degree",
"Graduate or professional degree")
)
# Verify the changes
# Count the number of "unknown" values in the column
sum(CHDS_F1_and_F2$`F1FATHEREDU Words` == "unknown", na.rm = TRUE)
sum(is.na(CHDS_F1_and_F2$Dad_edu_new))
str(CHDS_F1_and_F2$Dad_edu_new)
table(CHDS_F1_and_F2$Dad_edu_new)
#insurance info
CHDS_F1_and_F2$F2PRENATALPAY...14
CHDS_F1_and_F2$Prenatalinsurance <- ifelse(
CHDS_F1_and_F2$`F2PRENATALPAY...14` %in% c("Medi-cal (Except CPS Program)",
"Medi-Cal without CPSP Support Services",
"Medi-cal CPS Program",
"Self-pay", NA),
1, # Government Program/No insurance
2 # Insurance
)
CHDS_F1_and_F2$Prenatalinsurance <- factor(
CHDS_F1_and_F2$Prenatalinsurance,
levels = c(1, 2),
labels = c("Government Program/No insurance", "Insurance")
)
#verfiy changes
table(CHDS_F1_and_F2$Prenatalinsurance)
str(CHDS_F1_and_F2$Prenatalinsurance)
sum(is.na(CHDS_F1_and_F2$F2PRENATALPAY...14))
sum(is.na(CHDS_F1_and_F2$PaymentDelivery))
#ASD dx as a factor
CHDS_F1_and_F2$F2Aut <- factor(
CHDS_F1_and_F2$F2Aut,
levels = c(0,1),
labels = c("Typically developing", "ASD")
)
#verfiy changes
str(CHDS_F1_and_F2$F2Aut)
table(CHDS_F1_and_F2$F2Aut)
write_xlsx(CHDS_F1_and_F2, path = "CHDS_F1_and_F2.xlsx")
#=====================================================================================
#
# Code chunk 4- CHDS variables using dplyr and tidyr
#
#=====================================================================================
#structure
str(CHDS_F1_and_F2)
colnames(CHDS_F1_and_F2)
CHDS_F1_and_F2$F1FATHERAGE
#replaced 99 with NA because that was used to code for missing
CHDS_F1_and_F2$F1FATHERAGE[177] <- NA
#generates summary stats for all not separated by group
summary(CHDS_F1_and_F2)
summary_CHDS_all <- as.data.frame(summary(CHDS_F1_and_F2))
write_xlsx(summary_CHDS_all, path = "CHDS_Summary_stats.xlsx")
#chec unique values
sapply(CHDS_F1_and_F2 [, c("F1MOMAGE", "F1FATHERAGE", "F2BirthYear.y", "F2SEX",
"mom_race_new", "dad_race_new", "Mom_edu_new", "Dad_edu_new",
"Prenatalinsurance", "F2Aut")], unique)
#continous variables
continous_vars <- c("F2BirthYear.y", "F1MOMAGE", "F1FATHERAGE")
#cat variables
categorical_vars <- c("F2SEX", "mom_race_new", "dad_race_new", "Mom_edu_new",
"Dad_edu_new", "Prenatalinsurance", "F2Aut")
#this function will generate descriptive statitistics for continuous and categorical variables
generate_statistics <- function(data, group_var, continuous_vars, categorical_vars) {
library(dplyr)
library(tidyr)
results <- list()
# Continuous variables
cont_results <- lapply(continuous_vars, function(var) {
stats <- data %>%
summarise(
mean_sd = sprintf("%.2f (%.2f)", mean(.data[[var]], na.rm = TRUE), sd(.data[[var]], na.rm = TRUE)),
median_min_max = sprintf("%.2f (%.2f, %.2f)", median(.data[[var]], na.rm = TRUE),
min(.data[[var]], na.rm = TRUE), max(.data[[var]], na.rm = TRUE))
)
# Perform tests
if (length(unique(data[[group_var]])) > 2) {
# ANOVA for multiple groups
anova_result <- aov(data[[var]] ~ as.factor(data[[group_var]]), data = data)
p_value <- summary(anova_result)[[1]][["Pr(>F)"]][1]
} else {
# t-test for two groups
t_test_result <- t.test(data[[var]] ~ as.factor(data[[group_var]]), data = data)
p_value <- t_test_result$p.value
}
# Combine stats and p-value
data.frame(Variable = var, mean_sd = stats$mean_sd,
median_min_max = stats$median_min_max,
p_value = sprintf("%.4f", p_value))
}) %>%
bind_rows()
results$continuous <- cont_results
# Categorical variables
cat_results <- lapply(categorical_vars, function(var) {
freq_table <- data %>%
count(.data[[var]], .data[[group_var]]) %>%
group_by(.data[[group_var]]) %>%
mutate(percent = n / sum(n) * 100) %>%
summarise(frequency = paste0(n, " (", sprintf("%.1f", percent), "%)"), .groups = "drop")
# Perform tests
if (any(table(data[[var]], data[[group_var]]) < 5)) {
# Fisher's exact test for sparse data
fisher_result <- fisher.test(table(data[[var]], data[[group_var]]))
p_value <- fisher_result$p.value
} else {
# Chi-square test
chi_result <- chisq.test(table(data[[var]], data[[group_var]]))
p_value <- chi_result$p.value
}
# Combine frequency table and p-value
data.frame(Variable = var, frequency = paste(freq_table$frequency, collapse = "; "),
p_value = sprintf("%.4f", p_value))
}) %>%
bind_rows()
results$categorical <- cat_results
return(results)
}
CHDS_descriptive_stats <- generate_statistics(data = CHDS_F1_and_F2,
group_var = "F2Aut",
continuous_vars = continous_vars,
categorical_vars = categorical_vars)
# View results
(CHDS_descriptive_stats$continuous)
CHDS_descriptive_stats$categorical
results_list <- list(
Continuous = CHDS_descriptive_stats$continuous,
Categorical = CHDS_descriptive_stats$categorical
)
write_xlsx(results_list, path = "CHDS_descriptive_stats.xlsx")