-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathevaluate.py
43 lines (31 loc) · 1.32 KB
/
evaluate.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
from transformers import AutoTokenizer, AutoModelForSequenceClassification
tokenizer = AutoTokenizer.from_pretrained("distilbert-imdb/")
model = AutoModelForSequenceClassification.from_pretrained("distilbert-imdb/")
from datasets import load_dataset
imdb = load_dataset("imdb")
small_test_dataset = imdb["test"].shuffle(seed=42) #.select([i for i in list(range(300))])
def preprocess_function(examples):
return tokenizer(examples["text"], truncation=True)
tokenized_test = small_test_dataset.map(preprocess_function, batched=True)
from transformers import DataCollatorWithPadding
data_collator = DataCollatorWithPadding(tokenizer=tokenizer)
import numpy as np
from datasets import load_metric
def compute_metrics(eval_pred):
load_accuracy = load_metric("accuracy")
load_f1 = load_metric("f1")
logits, labels = eval_pred
predictions = np.argmax(logits, axis=-1)
accuracy = load_accuracy.compute(predictions=predictions, references=labels)["accuracy"]
f1 = load_f1.compute(predictions=predictions, references=labels)["f1"]
return {"accuracy": accuracy, "f1": f1}
from transformers import TrainingArguments, Trainer
trainer = Trainer(
model=model,
eval_dataset=tokenized_test,
tokenizer=tokenizer,
data_collator=data_collator,
compute_metrics=compute_metrics
)
results = trainer.evaluate()
print(results)