-
Notifications
You must be signed in to change notification settings - Fork 2
/
Copy pathmetric_tracker.py
169 lines (130 loc) · 4.86 KB
/
metric_tracker.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
# MODULE IMPORTS
from pyspark import SparkContext
from pyspark.streaming import StreamingContext
from pyspark.sql import SQLContext
from pyspark.sql import SparkSession
from pyspark.ml.feature import StringIndexer
from sklearn.metrics import accuracy_score, precision_score, recall_score, confusion_matrix,f1_score
import sys
import json
import csv
from PreProcessing import preproc
from pyspark.ml import Pipeline
import numpy as np
import pickle
import joblib
# FILE IMPORTS
from incrementalModels import incLR, incNB, incSVM, incKM
# SPARK CONTEXT
spark = SparkSession.builder.master('local[2]').appName('Sentiment').getOrCreate()
ssc = StreamingContext(spark.sparkContext, 1)
sqlContext = SQLContext(spark)
spark.sparkContext.setLogLevel('ERROR')
# LOAD THE MODELS
model_lm = joblib.load('Logistic_Regression.pkl')
model_svm = joblib.load('SGD.pkl')
model_nb = joblib.load('naiveBayes.pkl')
model_kmm = joblib.load('KMM.pkl')
# NUMBER OF BATCHES
count = 0
# INITIALISE METRICS
result_lm = 0
result_svm = 0
result_nb = 0
result_kmm = 0
# INITIALISE CSV FILES
def init_csv():
values = ['Batch', 'Accuracy', 'F1', 'Recall', 'Precision']
with open('metrics/logRegression.csv', 'w') as dataFile:
writeFile = csv.writer(dataFile, dialect = 'excel')
#for i in values:
writeFile.writerow(values)
with open('metrics/svm.csv', 'w') as dataFile:
writeFile = csv.writer(dataFile, dialect = 'excel')
# for i in values:
writeFile.writerow(values)
with open('metrics/nb.csv', 'w') as dataFile:
writeFile = csv.writer(dataFile, dialect = 'excel')
#for i in values:
writeFile.writerow(values)
with open('metrics/kmm.csv', 'w') as dataFile:
writeFile = csv.writer(dataFile, dialect = 'excel')
#for i in values:
writeFile.writerow(values)
# METRICS FUNCTION
def streamer(rdd):
rddValues = rdd.collect()
if(len(rddValues) > 0):
SCHEMA = ['Sentiment', 'Tweet']
df = spark.createDataFrame(json.loads(rddValues[0]).values(), SCHEMA)
df = df.na.drop()
df = preproc(df)
global result_lm
global result_svm
global result_nb
global result_kmm
global count
indexer = StringIndexer(inputCol = "Tweet", outputCol = "Tweets_Indexed", stringOrderType = 'alphabetAsc')
pipeline = Pipeline(stages = [indexer])
pipelineFit = pipeline.fit(df)
fitted = pipelineFit.transform(df)
df_new = fitted.select(['Tweets_Indexed'])
df_new_target = fitted.select(['Sentiment'])
x = np.array(df_new.select('Tweets_Indexed').collect())
y = np.array(df_new_target.select('Sentiment').collect())
# LOGISTIC REGRESSION METRICS
values_lr = []
result_lm = result_lm + model_lm.score(x,y)
lm_pred = model_lm.predict(x)
values_lr.append(count)
values_lr.append(model_lm.score(x,y))
values_lr.append(f1_score(y, lm_pred, pos_label = 4,average='micro'))
values_lr.append(recall_score(y, lm_pred, pos_label = 4))
values_lr.append(precision_score(y, lm_pred, pos_label = 4))
with open('metrics/logRegression.csv', 'a') as dataFile:
writeFile = csv.writer(dataFile, dialect = 'excel')
writeFile.writerow(values_lr)
# SVM METRICS
values_svm = []
result_svm = result_svm + model_svm.score(x,y)
svm_pred = model_svm.predict(x)
values_svm.append(count)
values_svm.append(model_svm.score(x,y))
values_svm.append(f1_score(y, svm_pred, pos_label = 4,average='micro'))
values_svm.append(recall_score(y, svm_pred, pos_label = 4))
values_svm.append(precision_score(y, svm_pred, pos_label = 4))
with open('metrics/svm.csv', 'a') as dataFile:
writeFile = csv.writer(dataFile, dialect = 'excel')
writeFile.writerow(values_svm)
# NAIVE BAYES METRICS
values_nb = []
result_nb = result_nb + model_nb.score(x,y)
nb_pred = model_nb.predict(x)
values_nb.append(count)
values_nb.append(model_nb.score(x,y))
values_nb.append(f1_score(y, nb_pred, pos_label = 4,average='micro'))
values_nb.append(recall_score(y, nb_pred, pos_label = 4))
values_nb.append(precision_score(y, nb_pred, pos_label = 4))
with open('metrics/nb.csv', 'a') as dataFile:
writeFile = csv.writer(dataFile, dialect = 'excel')
writeFile.writerow(values_nb)
# K-MEANS METRICS
values_kmm = []
result_kmm = result_kmm + model_kmm.score(x,y)
kmm_pred = model_kmm.predict(x)
values_kmm.append(count)
values_kmm.append(model_kmm.score(x,y))
values_kmm.append(f1_score(y, kmm_pred, pos_label = 4,average='micro'))
values_kmm.append(recall_score(y, kmm_pred, pos_label = 4,average='micro'))
values_kmm.append(precision_score(y, kmm_pred, pos_label = 4,average='micro'))
with open('metrics/kmm.csv', 'a') as dataFile:
writeFile = csv.writer(dataFile, dialect = 'excel')
writeFile.writerow(values_kmm)
count = count + 1
#STREAMING
dstream = ssc.socketTextStream("localhost", 6100)
init_csv()
dstream1 = dstream.flatMap(lambda line: line.split("\n"))
dstream1.foreachRDD(lambda x : streamer(x))
ssc.start()
ssc.awaitTermination()