Skip to content

AI-driven personalized immigration, job matching, social network assistant

Notifications You must be signed in to change notification settings

katechackers/pioneer

Folders and files

NameName
Last commit message
Last commit date

Latest commit

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Repository files navigation

Pioneer

Pioneer: Your polaris to shaping opportunities and navigating challenges in immigration, and job hunting, social networking across North America.





🍽️ Features

Main Features are:

  • 📜 Sum : A service offering immigration guidance, skill-based job matching, networking support, skill evaluation, and insights into North American job hunting.
    • Customized immigration programs.
    • Skill-matching for North American job opportunities.
    • Social networking assistance.
    • Feedback on skill gaps with actionable advice.
    • Educational resources on the North American job hunting process. sum



📂 Project Structure

.
├── backend        # Django backend project folder
│   └── search_api # Search API app
│
├── docker_nginx   # Docker Nginx folder
│   └── Dockerfile # An OS image
│
└── frontend       # React frontend project folder
    └── build
        └── static # Built static files for React



🚀 Getting Started

Prerequisites

  • Backend: Python 3.11+ installed on your system.
  • Frontend: Node.js v18+ and npm installed.
  • Global: Docker and Docker Compose installed.

Backend

Python Installation

  1. Install the Python version specified in /.python-version:

    pyenv install 3.11.9
  2. Set up a virtual environment:

    python -m venv .venv
    source .venv/bin/activate  # On Windows, use .venv\Scripts\activate
  3. Install dependencies: Installed via requirements.txt:

    pip install -r requirements.txt
    • Django~=5.1.4
    • djangorestframework~=3.15.2
    • python-dotenv~=1.0.1
    • requests~=2.32.3
    • openai~=1.58.1

Run

  1. Navigate to the backend folder:

    cd backend
  2. Set environment variables:

    1. Create a .env file to manage sensitive data and configurations:
      cp .env.example .env
    2. Open the .env file and add the following:
      # Create an .env_local file using the following as a guide
      TAVILY_API_KEY=your-api-key-here
      OPENAI_API_KEY=your-api-key-here
      OPENAI_BASE_URL=https://generativelanguage.googleapis.com/v1beta/openai/
      OPENAI_LLM_MODEL=gemini-2.0-flash-exp
    3. Add your API keys and configurations:
  3. Run the server:

    python manage.py runserver 0.0.0.0:8002
  4. Endpoints:

Database Migration

  1. Generate migration files:

    python manage.py makemigrations
  2. Apply migrations to the database:

    python manage.py migrate



🐋 Dockerized Nginx Deployment

  1. Navigate to the docker_nginx folder:
    cd docker_nginx
  2. Build and run the services:
    docker-compose up --build
  3. Access the app at http://localhost
  4. Stop the services:
    docker-compose down



Frontend

  1. Navigate to the frontend folder:

    cd frontend
  2. Install dependencies:

    npm install
  3. Set environment variables:

    1. Copy .env.example to .env.
     cp .env.example .env
    1. Open .env and replace placeholder values with actual API keys:
    REACT_APP_GOOGLE_MAPS_API_KEY=your_actual_api_key_here
  4. Start the development server:

    npm start



🤖 Integrations

  • Tavily API:
    • Use Tavily API for location-based insights and immigration-related searches.
  • Gemini 2.0 API:
    • Use Google Gemini 2.0 for advanced AI-based recommendations.
  • Google Map Platform API:
    • Use Google Maps API for location-based services.



📐 PioneerX Architecture

image

About

AI-driven personalized immigration, job matching, social network assistant

Resources

Stars

Watchers

Forks

Packages

No packages published