Skip to content

Commit e00944a

Browse files
Fixed typos in examples/audio,examples/generative modules (#1775)
1 parent 79c3144 commit e00944a

15 files changed

+47
-50
lines changed

examples/audio/ipynb/uk_ireland_accent_recognition.ipynb

Lines changed: 26 additions & 28 deletions
Original file line numberDiff line numberDiff line change
@@ -45,7 +45,7 @@
4545
},
4646
{
4747
"cell_type": "code",
48-
"execution_count": 0,
48+
"execution_count": null,
4949
"metadata": {
5050
"colab_type": "code"
5151
},
@@ -65,7 +65,7 @@
6565
},
6666
{
6767
"cell_type": "code",
68-
"execution_count": 0,
68+
"execution_count": null,
6969
"metadata": {
7070
"colab_type": "code"
7171
},
@@ -136,7 +136,7 @@
136136
},
137137
{
138138
"cell_type": "code",
139-
"execution_count": 0,
139+
"execution_count": null,
140140
"metadata": {
141141
"colab_type": "code"
142142
},
@@ -189,7 +189,7 @@
189189
},
190190
{
191191
"cell_type": "code",
192-
"execution_count": 0,
192+
"execution_count": null,
193193
"metadata": {
194194
"colab_type": "code"
195195
},
@@ -228,7 +228,7 @@
228228
},
229229
{
230230
"cell_type": "code",
231-
"execution_count": 0,
231+
"execution_count": null,
232232
"metadata": {
233233
"colab_type": "code"
234234
},
@@ -265,7 +265,7 @@
265265
},
266266
{
267267
"cell_type": "code",
268-
"execution_count": 0,
268+
"execution_count": null,
269269
"metadata": {
270270
"colab_type": "code"
271271
},
@@ -294,7 +294,7 @@
294294
},
295295
{
296296
"cell_type": "code",
297-
"execution_count": 0,
297+
"execution_count": null,
298298
"metadata": {
299299
"colab_type": "code"
300300
},
@@ -344,7 +344,7 @@
344344
},
345345
{
346346
"cell_type": "code",
347-
"execution_count": 0,
347+
"execution_count": null,
348348
"metadata": {
349349
"colab_type": "code"
350350
},
@@ -390,7 +390,7 @@
390390
},
391391
{
392392
"cell_type": "code",
393-
"execution_count": 0,
393+
"execution_count": null,
394394
"metadata": {
395395
"colab_type": "code"
396396
},
@@ -471,7 +471,7 @@
471471
},
472472
{
473473
"cell_type": "code",
474-
"execution_count": 0,
474+
"execution_count": null,
475475
"metadata": {
476476
"colab_type": "code"
477477
},
@@ -522,7 +522,7 @@
522522
"source": [
523523
"## Class weights calculation\n",
524524
"\n",
525-
"Since the dataset is quite unbalanced, we wil use `class_weight` argument during training.\n",
525+
"Since the dataset is quite unbalanced, we will use `class_weight` argument during training.\n",
526526
"\n",
527527
"Getting the class weights is a little tricky because even though we know the number of\n",
528528
"audio files for each class, it does not represent the number of samples for that class\n",
@@ -535,7 +535,7 @@
535535
},
536536
{
537537
"cell_type": "code",
538-
"execution_count": 0,
538+
"execution_count": null,
539539
"metadata": {
540540
"colab_type": "code"
541541
},
@@ -573,7 +573,7 @@
573573
},
574574
{
575575
"cell_type": "code",
576-
"execution_count": 0,
576+
"execution_count": null,
577577
"metadata": {
578578
"colab_type": "code"
579579
},
@@ -605,7 +605,7 @@
605605
},
606606
{
607607
"cell_type": "code",
608-
"execution_count": 0,
608+
"execution_count": null,
609609
"metadata": {
610610
"colab_type": "code"
611611
},
@@ -634,7 +634,7 @@
634634
},
635635
{
636636
"cell_type": "code",
637-
"execution_count": 0,
637+
"execution_count": null,
638638
"metadata": {
639639
"colab_type": "code"
640640
},
@@ -670,7 +670,7 @@
670670
},
671671
{
672672
"cell_type": "code",
673-
"execution_count": 0,
673+
"execution_count": null,
674674
"metadata": {
675675
"colab_type": "code"
676676
},
@@ -693,7 +693,7 @@
693693
},
694694
{
695695
"cell_type": "code",
696-
"execution_count": 0,
696+
"execution_count": null,
697697
"metadata": {
698698
"colab_type": "code"
699699
},
@@ -746,7 +746,7 @@
746746
},
747747
{
748748
"cell_type": "code",
749-
"execution_count": 0,
749+
"execution_count": null,
750750
"metadata": {
751751
"colab_type": "code"
752752
},
@@ -803,7 +803,7 @@
803803
},
804804
{
805805
"cell_type": "code",
806-
"execution_count": 0,
806+
"execution_count": null,
807807
"metadata": {
808808
"colab_type": "code"
809809
},
@@ -840,7 +840,7 @@
840840
},
841841
{
842842
"cell_type": "code",
843-
"execution_count": 0,
843+
"execution_count": null,
844844
"metadata": {
845845
"colab_type": "code"
846846
},
@@ -861,8 +861,7 @@
861861
" )\n",
862862
" os.system(command)\n",
863863
"\n",
864-
"filename = filename + \".wav\"\n",
865-
""
864+
"filename = filename + \".wav\"\n"
866865
]
867866
},
868867
{
@@ -877,7 +876,7 @@
877876
},
878877
{
879878
"cell_type": "code",
880-
"execution_count": 0,
879+
"execution_count": null,
881880
"metadata": {
882881
"colab_type": "code"
883882
},
@@ -924,8 +923,7 @@
924923
" # Predict the output of the accent recognition model with embeddings as input\n",
925924
" predictions = model.predict(embeddings)\n",
926925
"\n",
927-
" return audio_wav, predictions, mel_spectrogram\n",
928-
""
926+
" return audio_wav, predictions, mel_spectrogram\n"
929927
]
930928
},
931929
{
@@ -939,7 +937,7 @@
939937
},
940938
{
941939
"cell_type": "code",
942-
"execution_count": 0,
940+
"execution_count": null,
943941
"metadata": {
944942
"colab_type": "code"
945943
},
@@ -962,7 +960,7 @@
962960
},
963961
{
964962
"cell_type": "code",
965-
"execution_count": 0,
963+
"execution_count": null,
966964
"metadata": {
967965
"colab_type": "code"
968966
},
@@ -988,7 +986,7 @@
988986
},
989987
{
990988
"cell_type": "code",
991-
"execution_count": 0,
989+
"execution_count": null,
992990
"metadata": {
993991
"colab_type": "code"
994992
},

examples/audio/md/uk_ireland_accent_recognition.md

Lines changed: 1 addition & 1 deletion
Original file line numberDiff line numberDiff line change
@@ -583,7 +583,7 @@ _________________________________________________________________
583583
---
584584
## Class weights calculation
585585

586-
Since the dataset is quite unbalanced, we wil use `class_weight` argument during training.
586+
Since the dataset is quite unbalanced, we will use `class_weight` argument during training.
587587

588588
Getting the class weights is a little tricky because even though we know the number of
589589
audio files for each class, it does not represent the number of samples for that class

examples/audio/uk_ireland_accent_recognition.py

Lines changed: 1 addition & 1 deletion
Original file line numberDiff line numberDiff line change
@@ -368,7 +368,7 @@ def build_and_compile_model():
368368
"""
369369
## Class weights calculation
370370
371-
Since the dataset is quite unbalanced, we wil use `class_weight` argument during training.
371+
Since the dataset is quite unbalanced, we will use `class_weight` argument during training.
372372
373373
Getting the class weights is a little tricky because even though we know the number of
374374
audio files for each class, it does not represent the number of samples for that class

examples/generative/dreambooth.py

Lines changed: 1 addition & 1 deletion
Original file line numberDiff line numberDiff line change
@@ -634,7 +634,7 @@ def load_weights(self, filepath, by_name=False, skip_mismatch=False, options=Non
634634
plot_images(images_dreamboothed, prompt)
635635

636636
"""
637-
Feel free to experiment with different prompts (don't forget to add the unique identifer
637+
Feel free to experiment with different prompts (don't forget to add the unique identifier
638638
and the class label!) to see how the results change. We welcome you to check out our
639639
codebase and more experimental results
640640
[here](https://github.com/sayakpaul/dreambooth-keras#results). You can also read

examples/generative/ipynb/dreambooth.ipynb

Lines changed: 1 addition & 1 deletion
Original file line numberDiff line numberDiff line change
@@ -941,7 +941,7 @@
941941
"colab_type": "text"
942942
},
943943
"source": [
944-
"Feel free to experiment with different prompts (don't forget to add the unique identifer\n",
944+
"Feel free to experiment with different prompts (don't forget to add the unique identifier\n",
945945
"and the class label!) to see how the results change. We welcome you to check out our\n",
946946
"codebase and more experimental results\n",
947947
"[here](https://github.com/sayakpaul/dreambooth-keras#results). You can also read\n",

examples/generative/ipynb/molecule_generation.ipynb

Lines changed: 1 addition & 1 deletion
Original file line numberDiff line numberDiff line change
@@ -505,7 +505,7 @@
505505
"A gradient penalty is an alternative soft constraint on the\n",
506506
"1-Lipschitz continuity as an improvement upon the gradient clipping scheme from the\n",
507507
"original neural network\n",
508-
"(\"1-Lipschitz continuity\" means that the norm of the gradient is at most 1 at evey single\n",
508+
"(\"1-Lipschitz continuity\" means that the norm of the gradient is at most 1 at every single\n",
509509
"point of the function).\n",
510510
"It adds a regularization term to the loss function."
511511
]

examples/generative/ipynb/pixelcnn.ipynb

Lines changed: 8 additions & 9 deletions
Original file line numberDiff line numberDiff line change
@@ -29,14 +29,14 @@
2929
"probability distribution of later elements. In the following example, images are generated\n",
3030
"in this fashion, pixel-by-pixel, via a masked convolution kernel that only looks at data\n",
3131
"from previously generated pixels (origin at the top left) to generate later pixels.\n",
32-
"During inference, the output of the network is used as a probability ditribution\n",
32+
"During inference, the output of the network is used as a probability distribution\n",
3333
"from which new pixel values are sampled to generate a new image\n",
3434
"(here, with MNIST, the pixels values are either black or white)."
3535
]
3636
},
3737
{
3838
"cell_type": "code",
39-
"execution_count": 0,
39+
"execution_count": null,
4040
"metadata": {
4141
"colab_type": "code"
4242
},
@@ -60,7 +60,7 @@
6060
},
6161
{
6262
"cell_type": "code",
63-
"execution_count": 0,
63+
"execution_count": null,
6464
"metadata": {
6565
"colab_type": "code"
6666
},
@@ -92,7 +92,7 @@
9292
},
9393
{
9494
"cell_type": "code",
95-
"execution_count": 0,
95+
"execution_count": null,
9696
"metadata": {
9797
"colab_type": "code"
9898
},
@@ -146,8 +146,7 @@
146146
" x = self.conv1(inputs)\n",
147147
" x = self.pixel_conv(x)\n",
148148
" x = self.conv2(x)\n",
149-
" return keras.layers.add([inputs, x])\n",
150-
""
149+
" return keras.layers.add([inputs, x])\n"
151150
]
152151
},
153152
{
@@ -161,7 +160,7 @@
161160
},
162161
{
163162
"cell_type": "code",
164-
"execution_count": 0,
163+
"execution_count": null,
165164
"metadata": {
166165
"colab_type": "code"
167166
},
@@ -214,7 +213,7 @@
214213
},
215214
{
216215
"cell_type": "code",
217-
"execution_count": 0,
216+
"execution_count": null,
218217
"metadata": {
219218
"colab_type": "code"
220219
},
@@ -293,4 +292,4 @@
293292
},
294293
"nbformat": 4,
295294
"nbformat_minor": 0
296-
}
295+
}

examples/generative/ipynb/wgan-graphs.ipynb

Lines changed: 1 addition & 1 deletion
Original file line numberDiff line numberDiff line change
@@ -332,7 +332,7 @@
332332
"followed by a reshape and softmax to match that of a multi-dimensional adjacency/feature\n",
333333
"tensor.\n",
334334
"\n",
335-
"As the discriminator network will recieves as input a graph (`A`, `H`) from either the\n",
335+
"As the discriminator network will receives as input a graph (`A`, `H`) from either the\n",
336336
"generator or from the training set, we'll need to implement graph convolutional layers,\n",
337337
"which allows us to operate on graphs. This means that input to the discriminator network\n",
338338
"will first pass through graph convolutional layers, then an average-pooling layer,\n",

examples/generative/md/dreambooth.md

Lines changed: 1 addition & 1 deletion
Original file line numberDiff line numberDiff line change
@@ -731,7 +731,7 @@ plot_images(images_dreamboothed, prompt)
731731
![png](/img/examples/generative/dreambooth/dreambooth_44_1.png)
732732

733733

734-
Feel free to experiment with different prompts (don't forget to add the unique identifer
734+
Feel free to experiment with different prompts (don't forget to add the unique identifier
735735
and the class label!) to see how the results change. We welcome you to check out our
736736
codebase and more experimental results
737737
[here](https://github.com/sayakpaul/dreambooth-keras#results). You can also read

examples/generative/md/molecule_generation.md

Lines changed: 1 addition & 1 deletion
Original file line numberDiff line numberDiff line change
@@ -498,7 +498,7 @@ penalty is further guided by the model's property (QED) prediction.
498498
A gradient penalty is an alternative soft constraint on the
499499
1-Lipschitz continuity as an improvement upon the gradient clipping scheme from the
500500
original neural network
501-
("1-Lipschitz continuity" means that the norm of the gradient is at most 1 at evey single
501+
("1-Lipschitz continuity" means that the norm of the gradient is at most 1 at every single
502502
point of the function).
503503
It adds a regularization term to the loss function.
504504

0 commit comments

Comments
 (0)