-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathmodel.py
147 lines (121 loc) · 6.07 KB
/
model.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
import torch
import torch.nn as nn
import torch.nn.functional as F
#Embedding module.
class Embed(nn.Module):
def __init__(self, vocab_size, embed_size):
super().__init__()
self.vocab_size = vocab_size
self.embed_size = embed_size
self.W = nn.Parameter(torch.Tensor(vocab_size, embed_size))
def forward(self, x):
return self.W[x]
def __repr__(self):
return "Embedding(vocab: {}, embedding: {})".format(self.vocab_size, self.embed_size)
#My custom written LSTM module.
class LSTM(nn.Module):
def __init__(self, input_size, hidden_size, dropout = 0, winit = 0.1):
super().__init__()
self.input_size = input_size
self.hidden_size = hidden_size
self.dropout_i = 0.5
self.dropout_h = 0.3
self.wxi = nn.Parameter(torch.Tensor(input_size, hidden_size))
self.whi = nn.Parameter(torch.Tensor(hidden_size, hidden_size))
self.bxi = nn.Parameter(torch.Tensor(hidden_size))
self.bhi = nn.Parameter(torch.Tensor(hidden_size))
self.wxf = nn.Parameter(torch.Tensor(input_size, hidden_size))
self.whf = nn.Parameter(torch.Tensor(hidden_size, hidden_size))
self.bxf = nn.Parameter(torch.Tensor(hidden_size))
self.bhf = nn.Parameter(torch.Tensor(hidden_size))
self.wxo = nn.Parameter(torch.Tensor(input_size, hidden_size))
self.who = nn.Parameter(torch.Tensor(hidden_size, hidden_size))
self.bxo = nn.Parameter(torch.Tensor(hidden_size))
self.bho = nn.Parameter(torch.Tensor(hidden_size))
self.wxn = nn.Parameter(torch.Tensor(input_size, hidden_size))
self.whn = nn.Parameter(torch.Tensor(hidden_size, hidden_size))
self.bxn = nn.Parameter(torch.Tensor(hidden_size))
self.bhn = nn.Parameter(torch.Tensor(hidden_size))
def __repr__(self):
return "LSTM(input: {}, hidden: {})".format(self.input_size, self.hidden_size)
def lstm_step(self, x, h, c, maskx, maskh):
mxi, mxf, mxo, mxn = maskx.chunk(4, 0)
mhi, mhf, mho, mhn = maskh.chunk(4, 0)
xi = torch.addmm(self.bxi, x*mxi, self.wxi)
xf = torch.addmm(self.bxf, x*mxf, self.wxf)
xo = torch.addmm(self.bxo, x*mxo, self.wxo)
xn = torch.addmm(self.bxn, x*mxn, self.wxn)
hi = torch.addmm(self.bhi, h*mhi, self.whi)
hf = torch.addmm(self.bhf, h*mhf, self.whf)
ho = torch.addmm(self.bho, h*mho, self.who)
hn = torch.addmm(self.bhn, h*mhn, self.whn)
inputgate = torch.sigmoid(xi + hi)
forgetgate = torch.sigmoid(xf + hf)
outputgate = torch.sigmoid(xo + ho)
newgate = torch.tanh(xn + hn)
c = forgetgate * c + inputgate * newgate
h = outputgate * torch.tanh(c)
return h, c
#Takes input tensor x with dimensions: [T, B, X].
def forward(self, x, states):
h, c = states
outputs = []
if self.training:
maskx = (torch.Tensor(4*x.size(1), x.size(2)).bernoulli_(1-self.dropout_i) / (1-self.dropout_i)).to(x.device)
maskh = (torch.Tensor(4*h.size(0), h.size(1)).bernoulli_(1-self.dropout_h) / (1-self.dropout_h)).to(h.device)
else:
maskx = torch.ones(4*x.size(1), x.size(2)).to(x.device)
maskh = torch.ones(4*h.size(0), h.size(1)).to(h.device)
inputs = x.unbind(0)
for x_t in inputs:
h, c = self.lstm_step(x_t, h, c, maskx, maskh)
outputs.append(h)
return torch.stack(outputs), (h, c)
class Linear(nn.Module):
def __init__(self, input_size, hidden_size):
super().__init__()
self.input_size = input_size
self.hidden_size = hidden_size
self.W = nn.Parameter(torch.Tensor(hidden_size, input_size))
self.b = nn.Parameter(torch.Tensor(hidden_size))
def forward(self, x):
#.view() flattens the input which has dimensionality [T,B,X] to dimenstionality [T*B, X].
z = torch.addmm(self.b, x.view(-1, x.size(2)), self.W.t())
return z
def __repr__(self):
return "FC(input: {}, output: {})".format(self.input_size, self.hidden_size)
#The model as described in the paper. There is also an option to use either my custom lstm implementation or the torch.nn implementation.
#Note that torch.nn implementation is faster.
class Model(nn.Module):
def __init__(self, vocab_size, hidden_size, layer_num, dropout, winit, lstm_type = "pytorch"):
super().__init__()
self.vocab_size = vocab_size
self.hidden_size = hidden_size
self.layer_num = layer_num
self.winit = winit
self.lstm_type = lstm_type
self.embed = Embed(vocab_size, hidden_size)
self.rnns = [LSTM(hidden_size, hidden_size) if lstm_type == "custom" else nn.LSTM(hidden_size, hidden_size) for i in range(layer_num)]
self.rnns = nn.ModuleList(self.rnns)
self.fc = Linear(hidden_size, vocab_size)
self.dropout_x = nn.Dropout(p=0.3)
self.dropout_o = nn.Dropout(p=0.5)
self.reset_parameters()
def reset_parameters(self):
for param in self.parameters():
nn.init.uniform_(param, -self.winit, self.winit)
def state_init(self, batch_size):
dev = next(self.parameters()).device
states = [(torch.zeros(batch_size, layer.hidden_size, device = dev), torch.zeros(batch_size, layer.hidden_size, device = dev)) if self.lstm_type == "custom"
else (torch.zeros(1, batch_size, layer.hidden_size, device = dev), torch.zeros(1, batch_size, layer.hidden_size, device = dev)) for layer in self.rnns]
return states
def detach(self, states):
return [(h.detach(), c.detach()) for (h,c) in states]
def forward(self, x, states):
x = self.embed(x)
x = self.dropout_x(x)
for i, rnn in enumerate(self.rnns):
x, states[i] = rnn(x, states[i])
x = self.dropout_o(x)
scores = self.fc(x)
return scores, states