-
Notifications
You must be signed in to change notification settings - Fork 2
/
Copy pathtrain_gon.py
225 lines (163 loc) · 7.68 KB
/
train_gon.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
import pickle
import hydra
import numpy as np
import torch
import datasets
from pathlib import Path
from itertools import chain
from omegaconf import DictConfig
from torchvision.utils import save_image, make_grid
from torchvision import transforms
from torch.utils.data import DataLoader
from gon_pytorch import modules, utils
def train(model, batches, input, opt, device, epoch, latent_reg, log_every=100):
model.train()
seen_samples = 0
inner_loss_sum = 0
outer_loss_sum = 0
latent_l2_loss_sum = 0
latent_buffer = torch.zeros(len(batches.dataset), model.decoder.latent_dim)
label_buffer = torch.zeros(len(batches.dataset), dtype=torch.long)
for step, (images, labels) in enumerate(batches):
images = images.to(device)
batch_input = input.repeat(len(images), 1, 1, 1)
# Obtain latent with respect to origin
latents, inner_loss = model.infer_latents(batch_input, images)
# Optimize model with obtained latent
out = model(batch_input, latents)
outer_loss = model.loss_outer(out, images)
latent_reg_loss = latent_reg * (latents ** 2).sum()
loss = outer_loss + latent_reg_loss
opt.zero_grad()
loss.backward()
opt.step()
latent_buffer[seen_samples:seen_samples + len(images)] = latents.detach().cpu()
label_buffer[seen_samples:seen_samples + len(images)] = labels
seen_samples += len(images)
inner_loss_sum += inner_loss.item()
outer_loss_sum += outer_loss.item()
latent_l2_loss_sum += latent_reg_loss
step += 1
if step % log_every == 0:
stats = {
'avg inner loss': inner_loss_sum,
'avg outer loss': outer_loss_sum
}
if latent_reg:
stats['latent l2 loss'] = latent_l2_loss_sum
print(f'[EPOCH {epoch:03d}][{seen_samples:05d}/{len(batches.dataset):05d}] ' +
', '.join(f'{k}: {v / step:.4f}' for k, v in stats.items()))
return latent_buffer, label_buffer
def eval(model, batches, input, device):
model.eval()
seen_samples = 0
inner_loss_sum = 0
outer_loss_sum = 0
latent_buffer = torch.zeros(len(batches.dataset), model.decoder.latent_dim)
label_buffer = torch.zeros(len(batches.dataset), dtype=torch.long)
for step, (images, labels) in enumerate(batches):
images = images.to(device)
batch_input = input.repeat(len(images), 1, 1, 1)
# Obtain latent with respect to origin
latents, inner_loss = model.infer_latents(batch_input, images)
# Calculate loss for obtained latent
out = model(batch_input, latents)
outer_loss = model.loss_outer(out, images)
inner_loss_sum += inner_loss.item()
outer_loss_sum += outer_loss.item()
latent_buffer[seen_samples:seen_samples + len(images)] = latents.detach().cpu()
label_buffer[seen_samples:seen_samples + len(images)] = labels
seen_samples += len(images)
print(f'inner loss: {inner_loss_sum / len(batches):.4f}, outer loss: {outer_loss_sum / len(batches):.4f}')
return latent_buffer, label_buffer
def sample(model, input, mean, cov, n_samples):
model.eval()
latents = torch.tensor(
np.random.multivariate_normal(mean, cov, size=n_samples), dtype=torch.float32
).to(input.device)
model_input = input.repeat(n_samples, 1, 1, 1)
samples = model(model_input, latents)
return samples
@hydra.main(config_path='config', config_name='config')
def main(cfg: DictConfig):
device = cfg.training.device or ('cuda' if torch.cuda.is_available() else 'cpu')
log_dir = Path.cwd()
log_dir.mkdir(parents=True, exist_ok=True)
recon_dir = log_dir / 'reconstructions'
recon_dir.mkdir(exist_ok=True)
sample_dir = log_dir / 'samples'
sample_dir.mkdir(exist_ok=True)
print(f'Logging to {str(log_dir)}')
dataset_cls = getattr(datasets, cfg.dataset.name, None)
if dataset_cls is None:
raise ValueError(f'Unknown dataset {cfg.dataset.name}')
dataset = dataset_cls(cfg.dataset.root, transforms.Compose([
transforms.Resize(cfg.dataset.image_size),
transforms.ToTensor(),
transforms.Lambda(lambda t: t.permute(1, 2, 0))
]))
train_batches = DataLoader(
dataset.train, cfg.training.batch_size, shuffle=True, num_workers=cfg.training.num_workers
)
test_batches = DataLoader(
dataset.test, cfg.training.batch_size, shuffle=False, num_workers=cfg.training.num_workers
)
fixed_batch = next(iter(train_batches))[0][:cfg.logging.n_recons_per_epoch].to(device)
pos_encoder_kwargs = {'in_dim': 2, **cfg.model.pos_encoder.get('args', {})}
pos_encoder_cls = {
'none': modules.IdentityPositionalEncoding,
'gaussian': modules.GaussianFourierFeatureTransform,
'nerf': modules.NeRFPositionalEncoding
}.get(cfg.model.pos_encoder.name)
if pos_encoder_cls is None:
raise ValueError(f'Unknown positional encoder \'{cfg.model.pos_encoder.name}\'')
pos_encoder = pos_encoder_cls(**pos_encoder_kwargs)
grid = utils.get_xy_grid(cfg.dataset.image_size, cfg.dataset.image_size)
model_input = grid.to(device)
decoder = modules.ImplicitDecoder(
latent_dim=cfg.model.latent_dim,
out_dim=dataset.num_channels,
hidden_dim=cfg.model.hidden_dim,
num_layers=cfg.model.num_layers,
block_factory=utils.get_block_factory(cfg.model.activation, cfg.model.bias),
pos_encoder=pos_encoder,
modulation=cfg.model.latent_modulation,
dropout=cfg.model.dropout,
final_activation=torch.sigmoid
)
model = modules.GON(decoder, cfg.model.latent_updates, cfg.model.learn_origin).to(device)
print(model)
print(f'# of trainable parameters: {sum(p.numel() for p in model.parameters() if p.requires_grad)}')
opt = torch.optim.Adam(model.parameters(), lr=cfg.training.lr, weight_decay=1e-3)
try:
print('TRAINING')
for epoch in range(cfg.training.epochs):
train_latents, train_labels = train(
model, train_batches, model_input, opt, device, epoch, cfg.model.latent_reg, cfg.logging.log_every
)
model.eval()
train_latents = train_latents.numpy()
train_labels = train_labels.numpy()
recon_input = model_input.repeat(len(fixed_batch), 1, 1, 1)
latent = model.infer_latents(recon_input, fixed_batch)[0]
recon = model.forward(recon_input, latent)
gt_recon_pairs = torch.stack(list(chain.from_iterable(zip(fixed_batch, recon))))
save_image(make_grid(gt_recon_pairs.permute(0, 3, 1, 2), normalize=True), recon_dir / f'{epoch:03d}.png')
if cfg.logging.n_samples_per_epoch:
cov = np.cov(train_latents.T)
mean = np.mean(train_latents, 0)
samples = sample(model, model_input, mean, cov, cfg.logging.n_samples_per_epoch)
save_image(samples.permute(0, 3, 1, 2), sample_dir / f'{epoch:03d}.png', normalize=True)
stats = {'cov': cov, 'mean': mean}
(log_dir / 'stats.p').write_bytes(pickle.dumps(stats))
(log_dir / 'train_data.p').write_bytes(pickle.dumps({'latents': train_latents, 'labels': train_labels}))
torch.save(model, log_dir / 'model.p')
except KeyboardInterrupt:
print('Interrupting training')
print('EVALUATION')
test_latents, test_labels = eval(model, test_batches, model_input, device)
test_latents = test_latents.numpy()
test_labels = test_labels.numpy()
(log_dir / 'test_data.p').write_bytes(pickle.dumps({'latents': test_latents, 'labels': test_labels}))
if __name__ == '__main__':
main()