-
Notifications
You must be signed in to change notification settings - Fork 4
/
Copy pathanderson_nca.jl
301 lines (242 loc) · 8.08 KB
/
anderson_nca.jl
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
using LinearAlgebra
using Keldysh, HDF5
parse_param(::Type{T}, s::AbstractString) where T = parse(T, s)
parse_param(::Type{String}, s::AbstractString) = string(s)
function parse_params(args, param_def)
N = length(param_def)
names = ntuple(N) do i
param_def[i][2]
end
vals = map(param_def) do (type, name, default)
i = findfirst(isequal("--$name"), args)
return isnothing(i) ? default : parse_param(type, args[i+1])
end
return NamedTuple{names}(vals)
end
@enum SpinEnum spin_up = UInt8(1) spin_down=UInt8(2)
Base.to_index(A, sp::SpinEnum) = Int(sp)
flip(sp::SpinEnum) = sp == spin_up ? spin_down : spin_up
# type representing state of anderson impurity
# occupation of up/down stored in first two bits
struct FockState
state::UInt8
function FockState(s)
@assert s < 4
new(s)
end
end
# check whether ith spin is occupied
# note sp ∈ [1, 2] so don't need to do (1 << (sp - 1))
Base.getindex(st::FockState, sp::SpinEnum) = (st.state & UInt8(sp)) > 0
# flip occupation of ith spin
# note sp ∈ [1, 2] so don't need to do (sp << (i - 1))
flip(st::FockState, sp::SpinEnum) = FockState(st.state ⊻ UInt8(sp))
# convert internal state to index
Base.to_index(st::FockState) = Int(st.state + 1)
"""
Compute the populations (i.e. the diagonal components of the impurity density matrix) from a propagator
"""
function populations(P)
nstates = length(P)
ξ = [1.0, -1.0, -1.0, 1.0]
P_lsr_diag = reduce(hcat, (1.0im * ξ[s] * diag(P[s][:lesser]) for s in 1:nstates))
Zt = sum(P_lsr_diag, dims=2)
ρt = P_lsr_diag ./ Zt
return ρt, Zt
end
struct NCAParams
dyson_rtol::Float64
dyson_atol::Float64
dyson_max_iter::Int
max_order::Int
function NCAParams(dyson_rtol, dyson_atol, dyson_max_iter, max_order)
@assert 1 <= max_order <= 2
new(dyson_rtol, dyson_atol, dyson_max_iter, max_order)
end
end
NCAParams(; dyson_rtol = 1e-6, dyson_atol = 1e-10, dyson_max_iter = 100, max_order = 1) = NCAParams(dyson_rtol, dyson_atol, dyson_max_iter, max_order)
struct NCAData{T <: AbstractTimeGF, U <: AbstractTimeGrid}
P0::Array{T,1} # bare propagator
Δ::Array{T, 1} # hybridization function
P::Array{T,1} # dressed propagator
Σ::Array{T,1} # self-energy
ΣxP::Array{T,1} # self-energy convolved with propagator
G::Array{T,1} # green's function
grid::U # time grid
states::NTuple{4, FockState}
spins::Tuple{SpinEnum, SpinEnum}
end
function NCAData(P0, Δ)
states = ntuple(i -> FockState(i-1), 4)
spins = instances(SpinEnum)
statesize = length(states)
indexsize = length(spins)
@assert length(P0) == statesize
@assert length(Δ) == indexsize
grid = first(P0).grid
X = P0[1]
P = [zero(X) for _ in 1:statesize]
Σ = [zero(X) for _ in 1:statesize]
ΣxP = [zero(X) for _ in 1:statesize]
G = [zero(X) for _ in 1:indexsize]
NCAData(P0, Δ, P, Σ, ΣxP, G, grid, states, spins)
end
function Σnca(data::NCAData, t1::TimeGridPoint, t2::TimeGridPoint, st_sigma::FockState)
sum(data.spins) do sp
st_prop = flip(st_sigma, sp)
1.0im * data.P[st_prop][t1, t2] * (st_sigma[sp] ? data.Δ[sp][t1, t2] : -data.Δ[sp][t2, t1, false])
end
end
# collect all one-crossing terms
# define 4 points t1 > t2 > t3 > t4
# _________
# | |
# __________ |
# _____| | |___|___
# t1 t2 t3 t4
# <------------------------
# t
# st_sigma <- st0 <- st1 <- st2 <- st_sigma
#
# delta[sp0](t1,t3) * delta[sp1](t2, t4)
function Σoca(data::NCAData, t1::TimeGridPoint, t4::TimeGridPoint, st_sigma::FockState)
Δ, P, grid = data.Δ, data.P, data.grid
sum(data.spins) do sp1
sp0 = flip(sp1)
st2 = flip(st_sigma, sp1)
st1 = flip(st2, sp0)
st0 = flip(st1, sp1)
# delta[sp1](t2, t4)
h1 = t2 -> 1.0im * (st_sigma[sp1] ? Δ[sp1][t2, t4] : -Δ[sp1][t4, t2, false])
# delta[sp0](t1, t3)
h0 = t3 -> 1.0im * (st_sigma[sp0] ? Δ[sp0][t1, t3] : -Δ[sp0][t3, t1, false])
# integrate over t3
f = t2 -> h1(t2) * integrate(t3 -> h0(t3) * P[st1][t2, t3] * P[st2][t3, t4], grid, t2, t4)
# integrate over t2
return integrate(t2 -> P[st0][t1, t2] * f(t2), grid, t1, t4)
end
end
function dyson!(data::NCAData, t1::TimeGridPoint, t2::TimeGridPoint, params::NCAParams)
@assert t1.cidx >= t2.cidx
p_t1t2_cur = zeros(ComplexF64, length(data.states))
p_t1t2_next = zeros(ComplexF64, length(data.states))
for st in data.states
p_t1t2_cur[st] = data.P0[st][t1,t2]
data.P[st][t1,t2] = data.P0[st][t1,t2] # initial guess
end
↻ = (A, B) -> integrate(t -> @inbounds(A[t1, t] * B[t, t2]), data.grid, t1, t2)
done = false
iter = 1
diff = 0.0
while iter <= params.dyson_max_iter && !done
for st in data.states
p_t1t2_next[st] = 0.0
data.Σ[st][t1, t2] = 0.0
params.max_order > 0 && (data.Σ[st][t1, t2] += Σnca(data, t1, t2, st))
params.max_order > 1 && (data.Σ[st][t1, t2] += Σoca(data, t1, t2, st))
# p = p₀ + p₀ ↻ Σ ↻ p
data.ΣxP[st][t1, t2] = data.Σ[st] ↻ data.P[st]
p_t1t2_next[st] += data.P0[st] ↻ data.ΣxP[st]
p_t1t2_next[st] += data.P0[st][t1, t2]
end
diff = norm(p_t1t2_cur - p_t1t2_next)
done = diff < max(params.dyson_atol, params.dyson_rtol * norm(p_t1t2_cur))
for st in data.states
data.P[st][t1,t2] = p_t1t2_next[st]
end
p_t1t2_cur .= p_t1t2_next
iter += 1
end
end
function nca!(data::NCAData, params::NCAParams)
N = length(data.grid)
for d in 0:(N-1) # solve diagonal by diagonal
println("diagonal $(d+1)/$N")
for j in 1:(N-d)
i = j + d
t1 = data.grid[i]
t2 = data.grid[j]
dyson!(data, t1, t2, params)
end
end
return data
end
function make_bare_prop(grid::KeldyshTimeGrid, ρ, ϵ, U)
E = [0.0, ϵ, ϵ, 2*ϵ + U]
ξ = [1.0, -1.0, -1.0, 1.0]
P = map(1:4) do s
GenericTimeGF(grid, 1, true) do t1, t2
t1.cidx < t2.cidx && return 0.0
ϕ = integrate(t -> E[s], grid, t1, t2)
heaviside(t1.bpoint, t2.bpoint) ? -im * exp(-im * ϕ) : -im * ξ[s] * ρ[s] * exp(-im * ϕ)
end
end
return P
end
function make_bare_prop(grid::FullTimeGrid, ϵ, U)
E = [0.0, ϵ, ϵ, 2*ϵ + U]
ξ = [1.0, -1.0, -1.0, 1.0]
P = map(1:4) do s
GenericTimeGF(grid, 1, true) do t1, t2
t1.cidx < t2.cidx && return 0.0
ϕ = integrate(t -> E[s], grid, t1, t2)
heaviside(t1.bpoint, t2.bpoint) ? -im * exp(-im * ϕ) : -im * ξ[s] * exp(-im * ϕ)
end
end
return P
end
param_def = [(String, :contour, "keldysh"),
(Float64, :tmax, 10.0),
(Float64, :beta, 5.0),
(Int, :nt, 201),
(Int, :ntau, 101),
(Float64, :rtol, 1e-6),
(Float64, :atol, 1e-10),
(Int, :max_iter, 200),
(String, :mode, "nca"),
(Float64, :D, 10.0),
(Float64, :eps, -3.0),
(Float64, :U, 8.0),
(String, :output_file, "output.h5")]
function main()
println("running nca...")
p = parse_params(ARGS, param_def)
for (k,v) in pairs(p)
println("$k : $v")
end
data =
if p.contour == "keldysh"
c = twist(KeldyshContour(tmax=p.tmax))
grid = KeldyshTimeGrid(c, p.nt)
ρ = [1.0, 0.0, 0.0, 0.0]
P0 = make_bare_prop(grid, ρ, p.eps, p.U)
dos = Keldysh.flat_dos(ν=10.0, D=p.D)
Δ = [GenericTimeGF(dos, p.beta, grid) for s in 1:2]
NCAData(P0, Δ)
elseif p.contour == "full"
c = twist(FullContour(tmax=p.tmax, β=p.beta))
grid = FullTimeGrid(c, p.nt, p.ntau)
P0 = make_bare_prop(grid, p.eps, p.U)
dos = Keldysh.flat_dos(ν=10.0, D=p.D)
Δ = [GenericTimeGF(dos, grid) for s in 1:2]
NCAData(P0, Δ)
else
error("unknown contour $(p.contour)")
end
max_order = Dict("nca"=>1, "oca"=>2)[p.mode]
params = NCAParams(dyson_rtol = p.rtol, dyson_atol = p.atol, dyson_max_iter = p.max_iter, max_order = max_order)
nca!(data, params)
t = collect(realtimes(data.grid))
ρt, Zt = populations(data.P)
h5open(p.output_file, "w") do h5f
for (k,v) in pairs(p)
write(h5f, "/input/params/$k", v)
end
h5f["/output/obs/pop/rho"] = ρt
h5f["/output/obs/pop/Z"] = Zt
h5f["/output/obs/pop/t"] = t
end
end
if abspath(PROGRAM_FILE) == @__FILE__
main()
end