-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathCrossViT_base.py
428 lines (350 loc) · 17.6 KB
/
CrossViT_base.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
import math
import torch
import torch.nn as nn
import torch.nn.functional as F
import torch.hub
from functools import partial
import torch.nn.functional as F
from itertools import repeat
import collections.abc
__all__ = ["CrossViT_Base"]
def drop_path(x, drop_prob: float = 0., training: bool = False):
if drop_prob == 0. or not training:
return x
keep_prob = 1 - drop_prob
shape = (x.shape[0],) + (1,) * (x.ndim - 1) # work with diff dim tensors, not just 2D ConvNets
random_tensor = keep_prob + torch.rand(shape, dtype=x.dtype, device=x.device)
random_tensor.floor_() # binarize
output = x.div(keep_prob) * random_tensor
return output
class DropPath(nn.Module):
def __init__(self, drop_prob=None):
super(DropPath, self).__init__()
self.drop_prob = drop_prob
def forward(self, x):
return drop_path(x, self.drop_prob, self.training)
class Mlp(nn.Module):
def __init__(self, in_features, hidden_features=None, out_features=None, act_layer=nn.GELU,
norm_layer=None, bias=True, drop=0., use_conv=False):
super().__init__()
out_features = out_features or in_features
hidden_features = hidden_features or in_features
bias = to_2tuple(bias)
drop_probs = to_2tuple(drop)
linear_layer = partial(nn.Conv2d, kernel_size=1) if use_conv else nn.Linear
self.fc1 = linear_layer(in_features, hidden_features, bias=bias[0])
self.act = act_layer()
self.drop1 = nn.Dropout(drop_probs[0])
self.norm = norm_layer(hidden_features) if norm_layer is not None else nn.Identity()
self.fc2 = linear_layer(hidden_features, out_features, bias=bias[1])
self.drop2 = nn.Dropout(drop_probs[1])
def forward(self, x):
x = self.fc1(x)
x = self.act(x)
x = self.drop1(x)
x = self.fc2(x)
x = self.drop2(x)
return x
class Attention(nn.Module):
def __init__(self, dim, num_heads=8, qkv_bias=False, attn_drop=0., proj_drop=0.):
super().__init__()
self.num_heads = num_heads
head_dim = dim // num_heads
self.scale = head_dim ** -0.5
self.qkv = nn.Linear(dim, dim * 3, bias=qkv_bias)
self.attn_drop = nn.Dropout(attn_drop)
self.proj = nn.Linear(dim, dim)
self.proj_drop = nn.Dropout(proj_drop)
def forward(self, x):
B, N, C = x.shape
qkv = self.qkv(x).reshape(B, N, 3, self.num_heads, C // self.num_heads).permute(2, 0, 3, 1, 4)
q, k, v = qkv[0], qkv[1], qkv[2] # make torchscript happy (cannot use tensor as tuple)
attn = (q @ k.transpose(-2, -1)) * self.scale
attn = attn.softmax(dim=-1)
attn = self.attn_drop(attn)
x = (attn @ v).transpose(1, 2).reshape(B, N, C)
x = self.proj(x)
x = self.proj_drop(x)
return x
class Block(nn.Module):
def __init__(self, dim, num_heads, mlp_ratio=4., qkv_bias=False, drop=0., attn_drop=0.,
drop_path=0., act_layer=nn.GELU, norm_layer=nn.LayerNorm):
super().__init__()
self.norm1 = norm_layer(dim)
self.attn = Attention(dim, num_heads=num_heads, qkv_bias=qkv_bias, attn_drop=attn_drop, proj_drop=drop)
# NOTE: drop path for stochastic depth, we shall see if this is better than dropout here
self.drop_path = DropPath(drop_path) if drop_path > 0. else nn.Identity()
self.norm2 = norm_layer(dim)
mlp_hidden_dim = int(dim * mlp_ratio)
self.mlp = Mlp(in_features=dim, hidden_features=mlp_hidden_dim, act_layer=act_layer, drop=drop)
def forward(self, x):
x = x + self.drop_path(self.attn(self.norm1(x)))
x = x + self.drop_path(self.mlp(self.norm2(x)))
return x
def _ntuple(n):
def parse(x):
if isinstance(x, collections.abc.Iterable) and not isinstance(x, str):
return tuple(x)
return tuple(repeat(x, n))
return parse
to_2tuple = _ntuple(2)
def _trunc_normal_(tensor, mean, std, a, b):
def norm_cdf(x):
return (1. + math.erf(x / math.sqrt(2.))) / 2.
if (mean < a - 2 * std) or (mean > b + 2 * std):
warnings.warn("mean is more than 2 std from [a, b] in nn.init.trunc_normal_. "
"The distribution of values may be incorrect.",
stacklevel=2)
l = norm_cdf((a - mean) / std)
u = norm_cdf((b - mean) / std)
tensor.uniform_(2 * l - 1, 2 * u - 1)
tensor.erfinv_()
tensor.mul_(std * math.sqrt(2.))
tensor.add_(mean)
tensor.clamp_(min=a, max=b)
return tensor
def trunc_normal_(tensor, mean=0., std=1., a=-2., b=2.):
with torch.no_grad():
return _trunc_normal_(tensor, mean, std, a, b)
class PatchEmbed(nn.Module):
def __init__(self, img_size=224, patch_size=16, in_chans=3, embed_dim=768, multi_conv=False):
super().__init__()
img_size = to_2tuple(img_size)
patch_size = to_2tuple(patch_size)
num_patches = (img_size[1] // patch_size[1]) * (img_size[0] // patch_size[0])
self.img_size = img_size
self.patch_size = patch_size
self.num_patches = num_patches
if multi_conv:
if patch_size[0] == 12:
self.proj = nn.Sequential(
nn.Conv2d(in_chans, embed_dim // 4, kernel_size=7, stride=4, padding=3),
nn.ReLU(inplace=True),
nn.Conv2d(embed_dim // 4, embed_dim // 2, kernel_size=3, stride=3, padding=0),
nn.ReLU(inplace=True),
nn.Conv2d(embed_dim // 2, embed_dim, kernel_size=3, stride=1, padding=1),
)
elif patch_size[0] == 16:
self.proj = nn.Sequential(
nn.Conv2d(in_chans, embed_dim // 4, kernel_size=7, stride=4, padding=3),
nn.ReLU(inplace=True),
nn.Conv2d(embed_dim // 4, embed_dim // 2, kernel_size=3, stride=2, padding=1),
nn.ReLU(inplace=True),
nn.Conv2d(embed_dim // 2, embed_dim, kernel_size=3, stride=2, padding=1),
)
else:
self.proj = nn.Conv2d(in_chans, embed_dim, kernel_size=patch_size, stride=patch_size)
def forward(self, x):
B, C, H, W = x.shape
# FIXME look at relaxing size constraints
assert H == self.img_size[0] and W == self.img_size[1], \
f"Input image size ({H}*{W}) doesn't match model ({self.img_size[0]}*{self.img_size[1]})."
x = self.proj(x).flatten(2).transpose(1, 2)
return x
class CrossAttention(nn.Module):
def __init__(self, dim, num_heads=8, qkv_bias=False, qk_scale=None, attn_drop=0., proj_drop=0.):
super().__init__()
self.num_heads = num_heads
head_dim = dim // num_heads
self.scale = qk_scale or head_dim ** -0.5
self.wq = nn.Linear(dim, dim, bias=qkv_bias)
self.wk = nn.Linear(dim, dim, bias=qkv_bias)
self.wv = nn.Linear(dim, dim, bias=qkv_bias)
self.attn_drop = nn.Dropout(attn_drop)
self.proj = nn.Linear(dim, dim)
self.proj_drop = nn.Dropout(proj_drop)
def forward(self, x):
B, N, C = x.shape
q = self.wq(x[:, 0:1, ...]).reshape(B, 1, self.num_heads, C // self.num_heads).permute(0, 2, 1, 3) # B1C -> B1H(C/H) -> BH1(C/H)
k = self.wk(x).reshape(B, N, self.num_heads, C // self.num_heads).permute(0, 2, 1, 3) # BNC -> BNH(C/H) -> BHN(C/H)
v = self.wv(x).reshape(B, N, self.num_heads, C // self.num_heads).permute(0, 2, 1, 3) # BNC -> BNH(C/H) -> BHN(C/H)
attn = (q @ k.transpose(-2, -1)) * self.scale # BH1(C/H) @ BH(C/H)N -> BH1N
attn = attn.softmax(dim=-1)
attn = self.attn_drop(attn)
x = (attn @ v).transpose(1, 2).reshape(B, 1, C) # (BH1N @ BHN(C/H)) -> BH1(C/H) -> B1H(C/H) -> B1C
x = self.proj(x)
x = self.proj_drop(x)
return x
class CrossAttentionBlock(nn.Module):
def __init__(self, dim, num_heads, mlp_ratio=4., qkv_bias=False, qk_scale=None, drop=0., attn_drop=0.,
drop_path=0., act_layer=nn.GELU, norm_layer=nn.LayerNorm, has_mlp=True):
super().__init__()
self.norm1 = norm_layer(dim)
self.attn = CrossAttention(
dim, num_heads=num_heads, qkv_bias=qkv_bias, qk_scale=qk_scale, attn_drop=attn_drop, proj_drop=drop)
# NOTE: drop path for stochastic depth, we shall see if this is better than dropout here
self.drop_path = DropPath(drop_path) if drop_path > 0. else nn.Identity()
self.has_mlp = has_mlp
if has_mlp:
self.norm2 = norm_layer(dim)
mlp_hidden_dim = int(dim * mlp_ratio)
self.mlp = Mlp(in_features=dim, hidden_features=mlp_hidden_dim, act_layer=act_layer, drop=drop)
def forward(self, x):
x = x[:, 0:1, ...] + self.drop_path(self.attn(self.norm1(x)))
if self.has_mlp:
x = x + self.drop_path(self.mlp(self.norm2(x)))
return x
class MultiScaleBlock(nn.Module):
def __init__(self, dim, patches, depth, num_heads, mlp_ratio, qkv_bias=False, qk_scale=None, drop=0., attn_drop=0.,
drop_path=0., act_layer=nn.GELU, norm_layer=nn.LayerNorm):
super().__init__()
num_branches = len(dim)
self.num_branches = num_branches
self.blocks = nn.ModuleList()
for d in range(num_branches):
tmp = []
for i in range(depth[d]):
tmp.append(
Block(dim=dim[d], num_heads=num_heads[d], mlp_ratio=mlp_ratio[d], qkv_bias=qkv_bias,
drop=drop, attn_drop=attn_drop, drop_path=drop_path[i], norm_layer=norm_layer))
if len(tmp) != 0:
self.blocks.append(nn.Sequential(*tmp))
if len(self.blocks) == 0:
self.blocks = None
self.projs = nn.ModuleList()
for d in range(num_branches):
if dim[d] == dim[(d+1) % num_branches] and False:
tmp = [nn.Identity()]
else:
tmp = [norm_layer(dim[d]), act_layer(), nn.Linear(dim[d], dim[(d+1) % num_branches])]
self.projs.append(nn.Sequential(*tmp))
self.fusion = nn.ModuleList()
for d in range(num_branches):
d_ = (d+1) % num_branches
nh = num_heads[d_]
if depth[-1] == 0: # backward capability:
self.fusion.append(CrossAttentionBlock(dim=dim[d_], num_heads=nh, mlp_ratio=mlp_ratio[d],
qkv_bias=qkv_bias, qk_scale=qk_scale,
drop=drop, attn_drop=attn_drop, drop_path=drop_path[-1], norm_layer=norm_layer,
has_mlp=False))
else:
tmp = []
for _ in range(depth[-1]):
tmp.append(CrossAttentionBlock(dim=dim[d_], num_heads=nh, mlp_ratio=mlp_ratio[d], qkv_bias=qkv_bias, qk_scale=qk_scale,
drop=drop, attn_drop=attn_drop, drop_path=drop_path[-1], norm_layer=norm_layer,
has_mlp=False))
self.fusion.append(nn.Sequential(*tmp))
self.revert_projs = nn.ModuleList()
for d in range(num_branches):
if dim[(d+1) % num_branches] == dim[d] and False:
tmp = [nn.Identity()]
else:
tmp = [norm_layer(dim[(d+1) % num_branches]), act_layer(), nn.Linear(dim[(d+1) % num_branches], dim[d])]
self.revert_projs.append(nn.Sequential(*tmp))
def forward(self, x):
outs_b = [block(x_) for x_, block in zip(x, self.blocks)]
# only take the cls token out
proj_cls_token = [proj(x[:, 0:1]) for x, proj in zip(outs_b, self.projs)]
# cross attention
outs = []
for i in range(self.num_branches):
tmp = torch.cat((proj_cls_token[i], outs_b[(i + 1) % self.num_branches][:, 1:, ...]), dim=1)
tmp = self.fusion[i](tmp)
reverted_proj_cls_token = self.revert_projs[i](tmp[:, 0:1, ...])
tmp = torch.cat((reverted_proj_cls_token, outs_b[i][:, 1:, ...]), dim=1)
outs.append(tmp)
return outs
def _compute_num_patches(img_size, patches):
return [i // p * i // p for i, p in zip(img_size,patches)]
class CrossViT_Base(nn.Module):
def __init__(self, img_size=[240, 224],
patch_size=[12, 16],
in_chans=3, num_classes=3,
embed_dim=[384, 768],
depth=[[1, 4, 0], [1, 4, 0], [1, 4, 0]],
num_heads=[12, 12],
mlp_ratio=[4, 4, 1],
qkv_bias=True,
qk_scale=None,
drop_rate=0.,
attn_drop_rate=0.,
drop_path_rate=0.,
hybrid_backbone=None,
norm_layer=partial(nn.LayerNorm, eps=1e-6),
multi_conv=False):
super().__init__()
self.num_classes = num_classes
if not isinstance(img_size, list):
img_size = to_2tuple(img_size)
self.img_size = img_size
num_patches = _compute_num_patches(img_size, patch_size)
self.num_branches = len(patch_size)
self.patch_embed = nn.ModuleList()
if hybrid_backbone is None:
self.pos_embed = nn.ParameterList([nn.Parameter(torch.zeros(1, 1 + num_patches[i],
embed_dim[i])) for i in range(self.num_branches)])
for im_s, p, d in zip(img_size, patch_size, embed_dim):
self.patch_embed.append(PatchEmbed(img_size=im_s, patch_size=p, in_chans=in_chans, embed_dim=d, multi_conv=multi_conv))
else:
self.pos_embed = nn.ParameterList()
from .t2t import T2T, get_sinusoid_encoding
tokens_type = 'transformer' if hybrid_backbone == 't2t' else 'performer'
for idx, (im_s, p, d) in enumerate(zip(img_size, patch_size, embed_dim)):
self.patch_embed.append(T2T(im_s, tokens_type=tokens_type, patch_size=p, embed_dim=d))
self.pos_embed.append(nn.Parameter(data=get_sinusoid_encoding(n_position=1 + num_patches[idx],
d_hid=embed_dim[idx]), requires_grad=False))
del self.pos_embed
self.pos_embed = nn.ParameterList([nn.Parameter(torch.zeros(1, 1 + num_patches[i],
embed_dim[i])) for i in range(self.num_branches)])
self.cls_token = nn.ParameterList([nn.Parameter(torch.zeros(1, 1, embed_dim[i])) for i in range(self.num_branches)])
self.pos_drop = nn.Dropout(p=drop_rate)
total_depth = sum([sum(x[-2:]) for x in depth])
dpr = [x.item() for x in torch.linspace(0, drop_path_rate, total_depth)] # stochastic depth decay rule
dpr_ptr = 0
self.blocks = nn.ModuleList()
for idx, block_cfg in enumerate(depth):
curr_depth = max(block_cfg[:-1]) + block_cfg[-1]
dpr_ = dpr[dpr_ptr:dpr_ptr + curr_depth]
blk = MultiScaleBlock(embed_dim, num_patches, block_cfg, num_heads=num_heads, mlp_ratio=mlp_ratio,
qkv_bias=qkv_bias, qk_scale=qk_scale, drop=drop_rate, attn_drop=attn_drop_rate, drop_path=dpr_,
norm_layer=norm_layer)
dpr_ptr += curr_depth
self.blocks.append(blk)
self.norm = nn.ModuleList([norm_layer(embed_dim[i]) for i in range(self.num_branches)])
self.head = nn.ModuleList([nn.Linear(embed_dim[i],
num_classes) if num_classes > 0 else nn.Identity() for i in range(self.num_branches)])
for i in range(self.num_branches):
if self.pos_embed[i].requires_grad:
trunc_normal_(self.pos_embed[i], std=.02)
trunc_normal_(self.cls_token[i], std=.02)
self.apply(self._init_weights)
def _init_weights(self, m):
if isinstance(m, nn.Linear):
trunc_normal_(m.weight, std=.02)
if isinstance(m, nn.Linear) and m.bias is not None:
nn.init.constant_(m.bias, 0)
elif isinstance(m, nn.LayerNorm):
nn.init.constant_(m.bias, 0)
nn.init.constant_(m.weight, 1.0)
def forward_features(self, x):
B, C, H, W = x.shape
xs = []
for i in range(self.num_branches):
x_ = torch.nn.functional.interpolate(x, size=(self.img_size[i], self.img_size[i]),
mode='bicubic') if H != self.img_size[i] else x
tmp = self.patch_embed[i](x_)
cls_tokens = self.cls_token[i].expand(B, -1, -1) # stole cls_tokens impl from Phil Wang, thanks
tmp = torch.cat((cls_tokens, tmp), dim=1)
tmp = tmp + self.pos_embed[i]
tmp = self.pos_drop(tmp)
xs.append(tmp)
for blk in self.blocks:
xs = blk(xs)
# NOTE: was before branch token section, move to here to assure all branch token are before layer norm
xs = [self.norm[i](x) for i, x in enumerate(xs)]
out = [x[:, 0] for x in xs]
return out
def forward(self, x):
xs = self.forward_features(x)
ce_logits = [self.head[i](x) for i, x in enumerate(xs)]
ce_logits = torch.mean(torch.stack(ce_logits, dim=0), dim=0)
return ce_logits
if __name__ == "__main__":
model = CrossViT_Base()
input = torch.randn(1,3,224,224)
output = model(input)
print("Model done")
print(input.size())
print(output.size())
assert output.size()[-1] == 3
print("Model done again")