|
| 1 | +#include <bits/stdc++.h> |
| 2 | +using namespace std; |
| 3 | + |
| 4 | +/* |
| 5 | +
|
| 6 | +Labyrinth(https://cses.fi/problemset/task/1193) |
| 7 | +
|
| 8 | +# Prerequisite: |
| 9 | +-> Graph theory, Breadth First Search |
| 10 | +
|
| 11 | +# Main Idea: |
| 12 | +-> We can start from the starting position and visit all the 4 direction one by one and when we reach 'B', we'll stop. But the main task is to find the |
| 13 | + actual path. For tracking the path, we can backtrack the from the last node('B') to first node('A'). |
| 14 | +
|
| 15 | +Solution: |
| 16 | +
|
| 17 | +1. Find the position of the 'A' and store that in queue. |
| 18 | +2. Start BFS from starting position and visit all the cell. |
| 19 | +3. While processing if we reach our destination then backtrack and construct the path else we can't reach till the end. |
| 20 | +
|
| 21 | +Complexties: |
| 22 | +1. Time Complexity: O(n * m) |
| 23 | +2. Space Commplexity: O(n * m) |
| 24 | +*/ |
| 25 | + |
| 26 | + |
| 27 | +int main() { |
| 28 | + ios::sync_with_stdio(false); |
| 29 | + cin.tie(nullptr); |
| 30 | + |
| 31 | + int n, m; |
| 32 | + cin >> n >> m; |
| 33 | + |
| 34 | + /// Helper function to verify indices |
| 35 | + std::function<bool(int, int)> is_valid_index = [&](int x, int y) -> bool { |
| 36 | + return x >= 0 && y >= 0 && x < n && y < m; |
| 37 | + }; |
| 38 | + |
| 39 | + /// Given labyrinth map |
| 40 | + vector<string> labyrinth(n); |
| 41 | + /// Stores if the cell is visited or not, so that we don't visit the same cell twice. |
| 42 | + vector<vector<bool>> vis(n, vector<bool> (m, false)); |
| 43 | + /// Queue to perform DFS |
| 44 | + queue<pair<int, int>> q; |
| 45 | + /// Matrix to store the information that from which side we came. path[2][3] = 'L', means we came from (2, 4) |
| 46 | + vector<vector<char>> path(n, vector<char> (m)); |
| 47 | + |
| 48 | + // These array for traversion to the L, R, D and U |
| 49 | + int dx[] = {1, 0, -1, 0}; |
| 50 | + int dy[] = {0, 1, 0, -1}; |
| 51 | + char direction[] = {'D', 'R', 'U', 'L'}; |
| 52 | + |
| 53 | + for (int i = 0; i < n; i++) { |
| 54 | + cin >> labyrinth[i]; |
| 55 | + for (int j = 0; j < m; j++) { |
| 56 | + if (labyrinth[i][j] == 'A') { |
| 57 | + q.push({i, j}); |
| 58 | + vis[i][j] = true; |
| 59 | + break; |
| 60 | + } |
| 61 | + } |
| 62 | + } |
| 63 | + bool is_path_exists = false; |
| 64 | + /// Index of destination |
| 65 | + int final_x, final_y; |
| 66 | + |
| 67 | + // BFS Algorithm |
| 68 | + while (!q.empty()) { |
| 69 | + int x = q.front().first, y = q.front().second; |
| 70 | + q.pop(); |
| 71 | + |
| 72 | + for (int k = 0; k < 4; k++) { |
| 73 | + int nx = x + dx[k], ny = y + dy[k]; |
| 74 | + if (!is_valid_index(nx, ny)) { |
| 75 | + continue; |
| 76 | + } |
| 77 | + |
| 78 | + // We didn't go to this cell. Note that we can't visit the cell which has '#' |
| 79 | + if (labyrinth[nx][ny] == '.' && !vis[nx][ny]) { |
| 80 | + vis[nx][ny] = true; |
| 81 | + q.push({nx, ny}); |
| 82 | + path[nx][ny] = direction[k]; // Store the information from where we came |
| 83 | + } else if (labyrinth[nx][ny] == 'B') { |
| 84 | + path[nx][ny] = direction[k]; |
| 85 | + final_x = nx, final_y = ny; |
| 86 | + is_path_exists = true; |
| 87 | + break; |
| 88 | + } |
| 89 | + } |
| 90 | + if (is_path_exists) { |
| 91 | + break; |
| 92 | + } |
| 93 | + } |
| 94 | + |
| 95 | + if (!is_path_exists) { |
| 96 | + cout << "NO\n"; |
| 97 | + return 0; |
| 98 | + } |
| 99 | + |
| 100 | + // We need to construct the path |
| 101 | + string full_path = ""; |
| 102 | + |
| 103 | + while (is_valid_index(final_x, final_y) && labyrinth[final_x][final_y] != 'A') { |
| 104 | + full_path += path[final_x][final_y]; |
| 105 | + // Dependeing upon the direction, adjust the index. |
| 106 | + // 'U' means we came from the down, so go down |
| 107 | + if (path[final_x][final_y] == 'U') { |
| 108 | + final_x += 1; |
| 109 | + } else if (path[final_x][final_y] == 'D') { |
| 110 | + final_x -= 1; |
| 111 | + } else if (path[final_x][final_y] == 'L') { |
| 112 | + final_y += 1; |
| 113 | + } else { |
| 114 | + final_y -= 1; |
| 115 | + } |
| 116 | + } |
| 117 | + // reverse the string as we came from the last |
| 118 | + reverse(full_path.begin(), full_path.end()); |
| 119 | + cout << "YES\n" << full_path; |
| 120 | + return 0; |
| 121 | +} |
0 commit comments