From d6ba79d7def6533b1358ec9d6c122371f69a798b Mon Sep 17 00:00:00 2001 From: Prashant Dixit <54981696+PrashantDixit0@users.noreply.github.com> Date: Wed, 29 May 2024 13:52:17 +0530 Subject: [PATCH] evaluating RAG with RAGAs (#197) * assests and app name * update README * demo gifs * talk with github codespaces * talk with github codespaces * gitignore * linted * added version * link fix * added local llm tag * crag * link fix * lint * llm tags * non-clickable badge * non-clickable badge * fix * tutorial llm tags * added instructions and fix * colab fix * fix * formatted * hybrid search and rag colab * colab format * python test * node test * python test * blog link update * rag mlx * myntra search engine app * link fix * CrewAI Example * lint * node test * node test * node test * added readme * support for Gemini Pro * fix * chunking techniques * lint * Locally RAG from Scratch * lint * llama3 added * link finx * sdk manual cli chatbot phidata * sdk manual cli chatbot phidata * link fix * tags * advanced * update readme * remove key * lint * formatting fixes * lint * updated image * added demo image * change autogen notebook * lint * lint * rag evaluation with ragas --- README.md | 1 + assets/rag_evaluation_flow.png | Bin 0 -> 98126 bytes .../Evaluating_RAG_with_RAGAs.ipynb | 1158 ++++++++++++++++ examples/Evaluating_RAG_with_RAGAs/README.md | 13 + ...ommendation_with_doc2vec_and_lancedb.ipynb | 1192 +++++++++-------- 5 files changed, 1778 insertions(+), 586 deletions(-) create mode 100644 assets/rag_evaluation_flow.png create mode 100644 examples/Evaluating_RAG_with_RAGAs/Evaluating_RAG_with_RAGAs.ipynb create mode 100644 examples/Evaluating_RAG_with_RAGAs/README.md diff --git a/README.md b/README.md index 017253e0..11d18aef 100644 --- a/README.md +++ b/README.md @@ -59,6 +59,7 @@ If you're looking for in-depth tutorial-like examples, checkout the [tutorials]( | [Contextual-Compression-with-RAG](/examples/Contextual-Compression-with-RAG/) | [![Open In Colab](https://colab.research.google.com/assets/colab-badge.svg)](https://colab.research.google.com/github/lancedb/vectordb-recipes/blob/main/examples/Contextual-Compression-with-RAG/main.ipynb) [![local LLM](https://img.shields.io/badge/local-llm-green)](#) [![intermediate](https://img.shields.io/badge/intermediate-FFDA33)](#)|[![Ghost](https://img.shields.io/badge/ghost-000?style=for-the-badge&logo=ghost&logoColor=%23F7DF1E)](https://blog.lancedb.com/enhance-rag-integrate-contextual-compression-and-filtering-for-precision-a29d4a810301/) | | [Instruct-Multitask](./examples/instruct-multitask) | Open In Colab [![Python](https://img.shields.io/badge/python-3670A0?style=for-the-badge&logo=python&logoColor=ffdd54)](./examples/instruct-multitask/main.py) [![LLM](https://img.shields.io/badge/local-llm-green)](#) [![beginner](https://img.shields.io/badge/beginner-B5FF33)](#)|[![Ghost](https://img.shields.io/badge/ghost-000?style=for-the-badge&logo=ghost&logoColor=%23F7DF1E)](https://blog.lancedb.com/multitask-embedding-with-lancedb-be18ec397543)| | [Evaluating Prompts with Prompttools](/examples/prompttools-eval-prompts/) | Open In Colab [![LLM](https://img.shields.io/badge/openai-api-white)](#) [![local LLM](https://img.shields.io/badge/local-llm-green)](#) [![advanced](https://img.shields.io/badge/advanced-FF3333)](#)| | +| [Evaluating RAG with RAGAs](./examples/Evaluating_RAG_with_RAGAs/) | Open In Colab [![LLM](https://img.shields.io/badge/openai-api-white)](#) [![intermediate](https://img.shields.io/badge/intermediate-FFDA33)](#)| | | [AI Agents: Reducing Hallucination](/examples/reducing_hallucinations_ai_agents/) | Open In Colab [![Python](https://img.shields.io/badge/python-3670A0?style=for-the-badge&logo=python&logoColor=ffdd54)](./examples/reducing_hallucinations_ai_agents/main.py) [![JS](https://img.shields.io/badge/javascript-%23323330.svg?style=for-the-badge&logo=javascript&logoColor=%23F7DF1E)](./examples/reducing_hallucinations_ai_agents/index.js) [![LLM](https://img.shields.io/badge/openai-api-white)](#) [![advanced](https://img.shields.io/badge/advanced-FF3333)](#) |[![Ghost](https://img.shields.io/badge/ghost-000?style=for-the-badge&logo=ghost&logoColor=%23F7DF1E)](https://blog.lancedb.com/how-to-reduce-hallucinations-from-llm-powered-agents-using-long-term-memory-72f262c3cc1f/)| | [AI Trends Searcher with CrewAI](./examples/AI-Trends-with-CrewAI/) |Open In Colab [![LLM](https://img.shields.io/badge/openai-api-white)](#) [![beginner](https://img.shields.io/badge/beginner-B5FF33)](#)|[![Ghost](https://img.shields.io/badge/ghost-000?style=for-the-badge&logo=ghost&logoColor=%23F7DF1E)](https://blog.lancedb.com/track-ai-trends-crewai-agents-rag/)| | [SuperAgent Autogen](/examples/SuperAgent_Autogen) |Open In Colab [![LLM](https://img.shields.io/badge/openai-api-white)](#) [![intermediate](https://img.shields.io/badge/intermediate-FFDA33)](#)|| diff --git a/assets/rag_evaluation_flow.png b/assets/rag_evaluation_flow.png new file mode 100644 index 0000000000000000000000000000000000000000..4b74b6cb81bf180d1e70ba3bcf4ae0d6bafae77e GIT binary patch literal 98126 zcmd>GgF%zfhvqx{?)BdL zKYa5%!#pta&U?<;arRzo9Rd~QCGfB*uptl#o|NP(We5bF9s;@b1`7lH1&j8C0KA|% zypVc>1s)z)Mgib=a>v)|jw&`Lj?M=5#t^8rjg>L8gQ2~#v9*J#jUxiJK?Hn=`Q}3} z?Trl_&1|gizcI5ihP-hyb}%wn=iun_jl^#I-jX9<>hk8G1W~P_Z-HI6x2>0jFjr|4CM~l zMme|SX*>>{a>v0GLwj{BuzGRzJe07K_|8m!N4kW+gU%@OOdIoXZ*F__{E{M9HHY}_ zpGUa4k=h`7z@LZYWxBrdt3QvQ$seTteDH2I44eM-pLa4Q7~}5!c`MvJ>;Kn9_}n@^ ze^zWro<1_LvXT!H5g92ZE&bEB*N9{IjoEOwDVM4XH4TmRd9_xBHCc%GyLa!*zm@hR zG?|xaT2y2GS-flwaD7I`V?shg%j@Jon;+iXZ&VLB2)?K8QKkPj#bLH-xP+lcL&cgh z{=TK8u<8skzuiKsbce^w%fR|=Y4Ea#b0B(^lDh5W85yokqG&?XUFezY`XqVU0#@wa z2ghEe2ocA?qiCIL`pD#{-F^FCTW+NNyw$aTzu0V)gll`E79*!d$oO$87NgqbJp%p2 zl{}X2?t8MI|GxJSXHij6dD$ZrYmY6G>gkEP8Q2S5Z1S%4+%v`$J<)imJF9>|LOdsQ zME`AB&_CW2?$&I?!EVw^b~DTAa9$CZg9cH!GwFZ;B<w2OrsJRWq=wmNEroNo^!CUkW|) zk3F1TxjxATZz_yyMpo!^#9LC54mnjgdvMPYl0FzQhcD-S3{_icHpZYN_*9i73Gcz(~XUbGA{bxl` zj?!B4MJo4-wBDZ;!887|sQSY{-!_gHu$n(`G-bS$BfbA;n56yVxvb=+?(89|UVeu2>=0?~S}8IfqMYQ*?<|N22e?89FZ=sP zAqCm%%5a%e48EiH|K8FqL#cU{jJNOMXv1y)L>-036gs|DC}F7sN;b1i?)pAUQrm}3 zcA^vs*jz;NXC1S<-{C1nT)`-~+&a@5IRq*P#Q#Pm%5viOr2It|(|*F>M3Zou;g8#% zx~=AgkMg8g1^Qg03avzSVwy6*mo(LoEJS!>jc&ah(~#bio)qh-QkZ}=w8_J5iO%Q`f7Ial35?bv$FOu%$EJv_?VP(cFVs^a;ds zp)1U*=AtKwRM#dMyj$`qdg+T2d7rFOK00rZJUb3uLgQMLjGVbw!}Ej9PevYFtR}{1 zxc7H}wGn3d4@cUp59uzM*6Bli{)S?C5L5##ugB&`vBYpDyS){~O|7om=3@CahM%WB z6wa%X%(2ho&F%X{K3&%npU~yCGdqZyNI3IM?bE!bd0+0Z)%%@GQd6$+N_3B}7&Uf^ zOV$e0{_Eyt*6FKF%>VdiXSTr3t>e5#ItE{6wR*p{rtIdTkI9IpgWVD7Q5V`7>DCD| z@baN;CQ$pjJ)?B1KU`cbwQ}~#MU&YJ{o^pU526X};fQxflYEQRmLqA1nwR|8%6Rz! zD)QN*cbAT^BaejO08`N`N+!xyCIx|5p=vDfG77)d}Q0!UIzLa-z5j zv1#eX`j=qY{{uM)P}+cW=q%Kz)lBGQQwwtwKCB1erUh_hU&9Dq!W32Rb7!%`s!}? zRiw?2hD`gQzf*eW^1Q5A%;-F``W96u2Q1t1SzcFJ26xrSaaogj+WP0)Xb5eHde?1J zdF$sYwfHva%L}8XzxKtCTZKZ~n!?3%8i1ogWg2)pv8}=km3W#2y&gGE3iZlcf3l93 zNrPe~+PEd&D!4OMEKA0F_58pXv5(wNy<2F5jyEbx&y+?pQtN0V&({R@()RA4EewzyASg=U^H$Bb%8Z1ySE!1o@=U?Q5efLE}BoX*zUs7*1 zEQsa$6^9sJ5UTxt*Of^2%p_uhpy?l{?MBnJb)jIXgZQV~4`UY2r*<)UC>6*92B?(%7Uo6Boy~Fa@uJ z9)-A1i1eJv|C`f=zswY3rfIF-ExMZI%(pRxIilVlZD2gF7Jf6YF8+#_<6+Hw#kB%( zNrLBTYLd~5e9N@L+j{|cgY0oKPmZy_A2r8XBDA)s$GqE6At%(@flcPdHoaJ%bv#39 zosIgwbiEBVE7a`1H5TbYJtGcNlu5$w-T(i%83W~6jtZ$1}q*#X`XYG{BD+;6V5=8YCr5}RPvTesQmH53mb zwMgo*?sC{S9W%RV!zkJcUNz4t?^#+St}XcS3@c%wGoy$3FivI6`nicK+>Rv45pE#>-~x1AMA6rjlCNWrRDr z=g6iTo}y5~yQ0)wej&LwQU#*TCwqE(E6A($n4i9a{JDK1$_drP^OG}ju5(YJyPNff zn|K8gtCUXd(4RSf_O{N~P>%S3prA(&9yA?0d5(3a<@38*38w#+badqU{rh)oYwM8y zTl)v)N8~c;pZaf4pAm`GkbEJ(8!|p~JGPdK3dezO;DiDnMuE{dZ!$_$ybaZS<{Fv% z3;$-D5U54JzV!Ywd;jzHXkCEKfF>jfnWn(X&z~9>xN)Mw*AGw<%;&bWrL;G zKq3WKd7YWoG!_AVS)O>=@~`8jT!chKEkBgf4~6S`)wj3C-Iom?S5QA6%N%$4zTL>o zbi1TPa2%zN-+aqb(Annjkvi`239amXTLi~5eEFplZet{O5tW%E9*H2P{UwE=oo(|w z#GB*Hvux+6b-rOiWWgV z_Mw!%uG4gE8g^AQrwaDa*Q=G7?CQ)Q>TSV37DqkZY3f3E{*88CG3SbSCw!omR!oo- zBuUY97p-}`08bF;zH+vO>i6hE~s+& zR%qK6)Jo%oB zztYB=qtacBOeZRCSnj@NLFsmBDlbLJMF1`ltM5J*a-p*HM4XX+LToqs)m}L8CwG zCrmX~8ukd2KqXG?RZF=NuKT4IRg$@cHkbE6|Gi~W!jY-YOyf87jEuMW?!HLQX>NXz;<3PJ(i>;T-V>quT;<%N;F1zqyc?u< zax#x}5m=FGpS`3P4Gmgs%=F}|=387}ZChEU>3>$Z!{6mOl}feaEhiV#g`ag4^{u+0UR0SSbKCckuZI9yeDVqm{}#O1_o0?yRU z+B)91oZB&7WY3iCu2Q+OGed@pF?o(Ye!4{6W2n{)`-Z9gcD=fF3q!SbFlY;D_h*kpED%!ZB*WJ! zst*683CX^q=HR{hLoy!XlJVwCKLcN}Dx%|d40i{QGP;X|&jthl8n2?&Sl z+52kBmV%UM9S(>pemlRqmUeRC+HEWq4sWh~p*_`8&4qJ-ZRcp;I`cclrbC|IU?&yw z>|$R{Rxkp~`rZrMMa35s{`MU>Es(KF7wXL9z(Yzq9M~~&g%XIvA~}@`&AcV*zBY!& zj$@CYhN}?k3Rs8WFaL2wul{)HYwhb_a#Q<5jo6F5*B4N)b4!{P!jkPeLA`qaosaqS zf|q1^VW+{u-iTY>0`eiu&2|T{Re0=`Z>;zDn*-v(*!>;}(Fo^f1U`*^O(%XQzgH4q zhg2i0N%j6t|G*{LO4p}ssaJI#>gBfdKFw0$GDd>~N0yq^Gsk6WKD^9^nnWWHlSYIm zP!yHlG)F<{i_F&D9!`qi9pH-!eo5{j@a|Ta2NxmYc`CM{mmrMeQv5K>p@C^_3V{vL z3Q&tvQ#YoTXE9C=qVsL5tgPAX2sZ9@a~BX1!*lV1GihJXg~SEPXdKAgk{}#Bxjd&M z&bM)Tt7YwN{iMO`jHpXcPTN7vMu;K_OU{9#*fnjGOx*i`N@<%?MO!_1*u2b1gJhYM z198b;=~it}rm4YWbr%v;e-X`usq5?Qavvg-#j>dg=0-EjD;y7A>zK^86%sb zfD}_J*$(R~SKL3tv{}mRuxXk3T|aQZa(2eMAG$ohzS$Lrxa#Mr|0fU=jC=y_NYGHN zVPUBGiSkA+EIbqsCQ}-W4jkg&5urhQg*LG6m(R615>dF)j-5CHk@Y%rD9;^h4Nyq= z<`h;Ax!7%Y&W)>&awURtUi4u;O=|FJ(!6N7U~&|n5S%b%BYX1n$&AD^lg zz4W`H(7}>@2~UC-&|bGTLj7#}1qtkId%S8d>Z-h_uoo$@mW~MPy8!@(KD`PJVPtjh*padGA?4Dli55(jj=bnTsh+ZCk3rkH+?Ju{Q z94oh?1O$Myvok&wpHFH5Ekq`kWqC17G~ZUv$mns!j2jccD8az>%QTBL^B&XD%_9)~ zaqNaz*x1dQGk$M3;Gwzpl+w<}QArfYZ?JHns?8B%EIn7?z>Sl<~Mj@P=D*>NCfO$LFMLPW?w@TA$Q5VuUJQlm9& z6rjNSUJ+D&=8XyI7<-uXiT1kmQp4UBhW2ti>fo1&xPb1guUFVH^p}J40_B4L_aWKm zMvA`fq{R1%=7RJfrc+h%+vJeRc2R!vaR?|G2xjkyihFQHFj-d-7C>w`A~}7E%a~HTtIBsQ(fNvPDeMzv2k2{mPAFy0psiMrILwF{HAf<^Hg^SNi`dqEW1%p zlz7gyJ`ha0S_l8SifC;bf8W(FyKtnX_ZTE#;*tE^uz$^5B-+&*TX4d*EGNp7f9k6s zQgt$KRCRrYY!JFU98}L!9pD`3>g#Lk=sp$>dWi{M!}XOQFnC9QKO)L7 zSGO)fg2olir{U@>C`|N8`e-bTY?|%Da2& zw6(gF0Ug{P+0kdlAyS~}=$TDiq9$&U7IYV!@)UZ~%UoE89Ni+8JyFwO)6-VRjmmQ! z_xv@C>%J|LG_Achgv8!2IglE6z=8lXg?=}FtC3TeE}Y_}dsFO9rSlsft&r>v|4^{( zSF*nlS-v*;5*v-9PdV7t7APS~?dxB_fbsGD4_JuQv=$6;gflvjuO^Wa;vP6}Bl7&v zCui-vvrmW=Ntjn%k*z4>(j)2DU?*C@OfE6&e_rA`jxkf|^vvN(a1a)nUh+s7vD0!; zqBoyikeVr0NDEBfo5Ooe>ko^UKljY;`Pa02-UQVjhzpyc*Lx<*w4w)1=d{`p?jf|I zDbBN=qsL`6HG&dhGps`EYa^~bT}c!==;Z{!z#CV1PC>o7d!6b0H|dU^R8}so((X;QTy>O2 zhkjw_Zh<8Z$68Jf2F}&etk>ls%}rhJr4+n6SHV+eRJ0|up`2qYpBukF7W=X$5~P!RD1N&DZ>>(@gqBLdS^bR?z1b=4E?_T z+l_(pUHdHUACf#EXH&DWbK(!m_nNiD3!N`%dg)An&7UwoZJKFHv98eWDjeNeTw%bx zGw?X~1)fYMi#~`-NnYxvzMc>e=&Qr85%$}=o9Y5i4{}y6UrQ<7wwb;nWXfc1GcOuA z{7fRW*VYhtd4>Lr1SeA5%W(oBqm$WZ^H(30p*m4Z$q^b;Y_Um5FI&jwc9<*e0=Kt)ZhAo!YcE?k19NG_R$nYpbgZJ}TyJ3AY~WjS_-m$yPC^q>iomd$J+V{m5k zbTw7fuy2`!MN_hY^8Br9@4F&>s9Kd;*Yxyda6eNlEvYlbMX)S5Dj)u z#_OsbanPY6*hM4P z*bg;9yu}G#Ve+tONaWC1RUuL~15Js1hu_gHyCBmQ6j3iiP;&JuV`h*u&nGPe*>=|- zXme*kefQpB9P2Mni8A&weO2w$W+Q%kL8g8H-dUHO;F zWr!k=)zr)kKHF{!Mw;Sxgi^H(Py60DNNQ0&r}`0Z=-)lw$Iebk zK*sIu?X5a_8W=oyi8x*5lvsj6l&-f2f7(d!F`=tWEn zjAHNWt3izKs}`MK9z1^h_zo>?*l*L?wZ)$7*W%&}lpFmyvrcB5f3yHNvsD>L#?G#e zw&|nN8fhrCNVh*hX!`vMAAC;%hd!OU+n=$^sr!4n+on6x2b{*&J357;#9Ck>EarWn z=IoRg6<=H&9O_>J-KFfw=pd zI)C-uHdas{h2^%ygN|jv=8)m6JZFu4Npp*On>{v8gC9vixYF+Mm@x$Gxl^^%W;1zo zb%-hy!=33na$Wx( z%Tif>_BRdvEj>LjG*o1{^sKsf_@MWFIdI(eD@2G2O~KQsPsQ9!br*I0HRUR|1F#<7 zf4H05Z!?yEH_SsQBD>$K$@x0I89YBU=@(vp6#J;JmjGkj%)qs#>K3*Ub)47(t5mfS znxgF_(SP9OS1tJmR3CD4eSMreofMKhEv@Um?bIIXS){q+-h#(l2&x@Ora~(GSK3Rf zj?Y0sW;3e!+jaYR*4@!jN$QjZKeGo{A98a?0~h~lxtOd|1DoI2Fc%bo!l}M} z`(|tZG?5}PS;ZAKk>6p3O}`Q1b+IP_0gK{#x*U7+v~zM=J{r|qodx?j`mn|*9UWcx zmoLv>ycj?81^AEHM+|nC-8q5jaaG!~jTygDlIz$boDo|W@24xuoG5qSbJcu9e~ z+sGk)Aq8PzU^qt1Dwvoo!&~i19ga$4n6)N!8R+R%vFK1R@Todu^}M9)?8fC=O-ib| z?N;E)GODU1E&c=ryIx{qC;;0kLQhmKi;E*$SX?CMHoqsHemAnK6~MXcGj)PD6gmq_ zex^)RP$$^ALASXYqg26p{}?~NIz8(}SJ1zvpg@0(u|pOw+5P)-L%zIcA2k6fj{5w^ zRpCx)9rvy*+J=jLrt(q4j!@xc*X4QRxAOR>SL1T7EZ8_WUESTc^p`rriATN(jiV9> zDViN5|8#M8Kj`C~1vRsjj7&};3@Rmc8xDuB>R5Q{1E5dXjSJ)?;uqbYKB0jM`DU;{ zM}f`w8vYNBK15+s67L)2W!PwVE(PanYo~w}T5HjmNo~69jLTHaEahrINuT=q`K9cS zIrJz0Uv)1|TU*;bV&Y`?v?E1V zN#GW;0ETJ;3J~^q+19o;#*7Qh0?~?v^Mefl(wX1=LyaouR900Ld7Qq(5VrGq86Vx! zC1}VQzb_B^=#C)6bwSs&^(rH9G8(td1eJlXJFahMWGoIjb(Z0O6PaqLP%D&KCl!b2n z`A&_{=~5&yjI7}2%+DRhzahyv6~CyL{`h&R55Bj3_Ouq0Q+rSr@Q1n2j!sHW*4XRd zz!35BX+4Z=?utZ47B$D{@Kg2hHAX6kxGEv8CoBrab^ZPQ)m-7A*NGQ)KQ`;&cg3!# ztMiOr^|-!7_NH+5ki5H!Y|@{L(XvLF^QZOFUxg>XOIzM`);uJ3^QDNV}@Y|T@18(QSLRBm2BQu z9%skfGUnz_cXoCx$BTV`{CEPg(K^VpiM%!@U@yZZW1EXw1Wl~Hy*&USOFg$&S35vf zQLwXPZ@4_BJUuoO}DhX{=6T1Rj_aX0V{OL1N- z;>BkNgSctugX|HM)|Kx;Nqq|ywX3HmT`66>+>o{IkZ^OfU=>6al&Yhp1vRLxIfylM z86<=Ij~;zoAIzFeLF~@ApkZL7z;Fcx1#?xIu04^|DXz!-nR1EkrDlT=(_ddvFbQZL zb8+3Xv9W<*V?R}h-v(@wOv zfxbCDKE8MU`TJpQCh4pKR@0i=k>fAnz^W5&HcpQdTP;)P;(E{XcV(J6mHR_eQ&XLN zedvv#9%UnYn%g!8sIn4@L4CH}cFKYS@HG4%U=aPG$v$gR<9r>OvJ9SO(+5kMkWgwt z*n|KT6;&LEG4{>wKD^ft{V5L!CFqtW7exq^YSFQ|xf!nB5x--Xxd>J9|7}_-H!tFv zrgp=M_8vtX`X4hwrah4|pl5yu5H86vhV z{2^9P7~8fsT#963dgA^GTyAOUXO0c~KUHX)ZEcOl;#!`aJj8`|e5ULQPF3w5PNv*l zXbBZMlBaQ=b|RhizP@~&hj=5lP$i&phwRQBTUA5t4S}C6m3E8fhgZXCLcvMg7OK8? zMgWUpKJ*0eBibK_-x@hRIVVS|S5&-U)3|rHF-@r={LEIAqRmTcj#sABhFt78npuJS z4V|AdCrPXWqMbV`u1G+&P9#Tr=3l40du`RJk)q-1yvg38aPj&4sw7|NR8{07CILMQ z%g)2MYM$oR7V<2igH95mG{V&wOoC;~v&GgrB{iHoo5+PCFIHf5#SM3lkT(Ew@n?d- zPJM~ zPE({u@3gDk-;KMb$8 z&T?8$Mi%xk->uVm)bIx|GUw^?seu|G3)TL?(-?yt*Z;EXV%6B8J=QyzoX1VTa)uy zF^Z{>8a!b~y~E|io;fzzwKa>EH6)As-9$)j`^P<50fx-GT&@q|d36lj`yIAfC@yL# z{I@)$J%#ulYF3UUGyUZ@&m^AWfr%w|I}FX5ekU-gxP0wOX|!O}`M0 zu;uxVs`QK5BKa$^LQJc7NZtK5=n+AviZDcc_B zoi~UuwCONcE64TmRHX?KS7;uOf~RF!8=of?fywxSt)=#A!kV&QQ89QtZ()TOg;VX$ z#j?l#1dmbwszUK*&hIERHzKx0XGrLgr9^fC0}JNB(_soOV|GP0p;ot9ntY*#C+j+M^ds!c!1f9BERuMN;dC!Y(_7`t9X!#wa;X|@^ z6zrtC9v_UDa$vO1#ihv2MZGreSJwV)sHytBaL99-hH9|5(}MQ9;{LNAhJUM-HtADo9HV??EEGE6Rl@{_TcpsadpC50JSK2)STTHH2MJUKe6QPNHCMllB z8X}j6Dge)vl9I|krdYnvKAsML%XW_zF;%AC6=>a*qLBJ^9!KS7M4Jh)@;kdmz=IZ} zBD#Ki>2z+7k<~Q6OCsv|&>HDHU(WjECtKO%UMKs9hNQ6Zo{+=If^V&}loffHMg7d* zhSro+{ep-j&YhZ^;d=UI&3oKR!Xw*l&~@>M4&02#zc8;WMX|0f)CT;J509FP^Cb|o zyo35zn!z^LjrnFp>eQhHDy|*{KQVBw+MOf_Pnlb~Dw+LuE4&&VmSLZ*8$R!jW*HW$ zk0GzHfSJ%5St{=2sEn@&<7>E*JyZSs;_|5nNqs{e`u*i_%6_DlV!^-Qzfy>Mel6uD z{D8>5>O6nm1L?UuUCmmCN6GUgB}G1xUT$qDTjl#AK*8Y2f+eu+3G)Iu`1GgSL{F`Z zfKK*Fu()B~MCXbJSt#PzT2CGKxxwNcnD^ej@B$BsT{RpK4u+rWrprgZ0mt_eE%;Vw za7P4Z^!Ho^k!VX*GKJdM^A3=TdZaA4FuW>orTd~z+<))-W|t%LLXR_qruvVaU=<{2 z9u>Gqyz|b@F*1Kc*G~VbDtt{@oGJsIy8Up>^IQ<qj}o{!P(>Q zNJL^+{ZH;dR)QAjp4$}fR{GFvP_FJaV=#7ka_lU9gtDH(&8iGs<2|@Y=G!VhV6VHz zBEub9T{4W-d!;-1z;|LKY5+kYGyQ(73p`9{Zoi@lj||+uc@r zirVv@Imz#b?(!;+@x=l6zP~WMPUUhgLS^6mLHwoN?KVK~3HRMI35rC8V=Cklo25pE z>DV!M1q+Lf5GA6l`INm98pfC>o`Fc5iTW> zg|rLMigfwr1f}Uz^*CL2mMGoZ@E;$JPlC(k2&FjbFhsP^_&V5+)3du;QQQK__7*P5 zrdbEvhSYa;LT7B5G{$o}^8rnc^FqDBEcs^l+H6QLikkAqrqlq=%dQR2cM`U^7!kVF ziOoOsg;Wu(8*9()x3=T1gztdWtc58(t{1{RpL+37?=*CZDIt7+tdFXy1nTQ^q$>ZpSu*TEgf7+f-N-lWr_Q2y3=)RpxYVKtt?i|`&KTj5h*nvlUU@swujJs z4236C_B58zJ`S4;Un+$B1;KSn`Qehkc=6&E=y#oXlEM#0>)f4zzy;K|x$DXs$pF0o zrxjeC<^@T)LYv;@@uAl|Ww3fRxLeg_JeX;y86mJB{`ujpBGDNC)t}T{>XrDhp4nST zSI?p}ZD&1vlGaGnw{eXH^+fk>lc+(JX=(yn*{k=| zvm$bKE{*7;XIGwxn{yKa*T~#IQrS+|oAVum4QxH9pn*QCs_ac>k3!RWa{J3kH(Rhx zUn_K+zE;(mRS;H70N*g}FUpyGXXn_sVXkl-&A`*rWkcL_<-EhNFpOZY7sOetDS4`` zMY#4-_gtKGyXqM{bk#%743(hx%<*xKLdRgrDs@Bjh3Z{Wx~N=*Kc!(OKY*?1A3R9Q z?D?YkgoOp)2gD9V{;Qvnpgd}g^$+KHhF zBbRhnxBPBw>m&Vg#d|9fy8hz#UZbV#S5LHxFcI{BqNZ|Nh)G~sF8=2X5L^n#2O;1X zfhvUVExpSi=(Nu^_THCmU`ANEgtw3+PK0 zZ`GV=<_4Q3$#p71hgo3diAw+&Zdx5wk3xhy2eXJdJa1Rx9J*7$*-A zzrlZzJJW$ci}~!C?E5#u#H6Iq&6p&1LvcK{N2Dr}>32SS`@ml-8V%63VnC5YUL=yQ z|H>j#BiIH+6SQo!%y3y%8JTI@H(ke0h6{C)vom0qp=bTt;*^YKX1~V+E#?!9;K?0* zO<7Q{^yd^y5-DhuKx^VtY*zc1m~7bgt+Gycjd72l38)Ic>r8BtNsuzQ%}$c~z4{v0htYV2 z8JcOt77Fl_Zv4@P9q<4F7eL$rngy_IHlxlv;Fwe8AW2E z+b@v>jZVm;wlR(m$DRTxwp`qiq9)G_n@AhJq&R*8RGLrSN6)e$M}#0jiQ~o#Sl&z% z9>J`KD$;7AjGrLbI|?wnMhE+NH^8cl-jAg4KaE}0eb55;Ch-rFr~<_6E-5MK9$SH& zlZHlKU7buky(m*A+5sFLvV8I4gB5j`JnDCbg@%04{*75g_Ul!vH zcB~fOI;q?%iiNAoE9NMO3r4@z7NRiHfP$YaGCViIB6uM@>8)&ksv2 z`|y2`WUtXZjBto8F5(+urU(+9lH}4#5PAi@Hasj{WiQ9VY*aQknK^e*=P-V6m2gtl zQm}Xo^;gwcOew25*%6Jjs_}P6cOm-CgY9kDNS(d-b75aERnatnL=PZEC=~iQfA;X}}EANZu zi&KkZY^^7!of41C9OP=A^0tkanPZ;wY^5O{@fxygom?$v=bo|C5!=ToL_E!-IG^!`;PZK@j!Bf}q*f<06lVXAf}oz-$;o!e~Bk53Uw~u7=BUG=S!%8^^Y9!FcgI zBEWw;u#0TC$^6Os0Re9!V7qLP(W&V~pl=jjJRO%PwuL#h_srG|u!DtSrM(USVl8t2 z0dmnT=1F$Mb6U4)2Vn@%eqid4Z6e1<>~Jk;;95-ds$~6u&ds0>d_L|Lt03p)7a}u4 zblqZqg`C%pk=5zsc0O9!5G-g*f4{nCF~!KtLg%FS*{ZL1Hzs_FCv%})F0a5^A~9uK zqhZYk5XuBTAav$QSNa3O#2027Kc>>d={flqgHr>OQvM{LyLYo6^Kw%93@i+k2#AUb zhTYJTVc)6wdef%6aIYF_*4!L$z58^H_$;^rJE^A65yDHaNzYOq6?wJ5TB+eA1& ze(O>I#Ezwi>G0Bz{x`DBXD16#Ami$vE|`|cs@Ji4pKS&uOzR5V&b8-;VZn3%?a4=Iv_X{}U;=ujPu6@^k;e`5r!0mXa6OV2e+2T*`&>#%exc ze455q0U;$A#qIzkIRyNELxYPTkMit;b9UCc{Mx(^#usUAkACTvZv6HGcX>n650ra` z62+E!3PAWJbXmJ5Y7coIE;edTLqQEn*vwawEwncip^Rcy(BP7^=f zJ3P46*uUnjy2=aO2zT)Ar2GT}jv3YGAb+Nw1|8W7t^CrEO9i=VuEjtp!?@G4if7l> z>^%)y!A4qb$OP>h<0K+tCd_l6SQBkrYU#Z9-%%8Zkd8LzSC%~{Pe8r`72 z*v!K;y*o$&qT&kAeZ0bp_ndcoaku_n@nD$Ustoeio*&EG&<18NoSsaU$Hs^U#hk@< z2ab<&U-PLETzVhx2tE6`f4O+#?t_AMSL~j#(iE{;FZz@k7ZSaji~BM&UdEv6P=+)1 zY$YMVjNEH@$X<-IOjcG~8LfqzTgBm{k`jp+%6kJ7FK=82v?d+$sBq-uKQ6tOuWNe!QX~i6IH2 zlD;)|ucXT6$?adTFQOXpnqC^E@xC_wV&9dQvC)`@vI8vI?7LxfsZZbRS6!d(EKlbi z8;0;^H4{pba1+X6|Mgv;?wFJscHn~p96$k6Q04!y)nQe%6sKM|(ZNXK9&Z8txAM0t z<;9fT9(B>}9N*Ty=qvv{icf6mpujA)nH9NB|2kahTj`^`^9o)h+p7oq20JK!K6Hnl zj)5W39SdDLYtZie*vf(6CDsG%B(%sslS%15Jy?wwaC%D0qV2Nb(3ij+bau4qu)ov= zWh*BAD4!L1wEgMM>xlne(HqaHQEo|YHBp)dSg;%B1JQ7u0*Dro5m%sv(JHqTD;O1i z^11Vm79cVuF!md~i-O0pv(TVrtiopYQSu`pp(MblLXwh_cHE}`JGM5MMF8kI zLvSQ^Yq|!R-I4m`OCvZJ0FFOk$t7^5xgBlXsI~^P6hx1zXvK4e-`Ut)PZbyvQc}vO ztE<1)Q3zA!gS@@56LC(2Zg zQ$@W~Zsrdlr#loB-9Vi|E(qH~?Ju)mmR>GTPd7|CcM_lmtp5UlhF=zpqW%JELjWcm zzcNf^Gq}|eM#})maWIcJPl*9(1_)V0Gc&1Iuh4)JN;XC4G!TCMqg2!Cy{hbnqX3I; zZ6^>+1q24p13WA0nMMRYwLoW-z0wkufN@u!mfO=<-Yfa8Uq8p3I|&ipZWJz?eL~f- zssAxwTy*rFu`%d#^7V`Dm%C*Xc|w4UjS~>>BrMvJmuE+2vm)2>wKdKNdcfJ9+6t&ikU0uH(R z5>&V9nwn21HST{#XIBfD3r#TnH12IH@CEq^V#12E)$CpyeS^@ zMCq2#(9n=ae|SPdH(=MZb!vFLyu1MJyowEB)vjy=bQkDER{+~NFM562&zZetF;U70 z2D$}!yjlHUgM%tnz~!to%Pplw^L64yJl#?ZowvrCz;c5=aKtd|5i>Kh!kzPH%zE`n z*Gz-QR-oW0n8Ga}41suhg}p@x|yi0-R6(wUcTNdLtYj3fv90GbLqf%Lcr|v`iE9 zDV?32U-cTikjeJK;DpP~8Txt;eh_vjjm^z**i%&w{y@P+86w^iK_}DM+iNt}`2OVl zd@x@}5O85BE?dAjW0R9iX&I_H%l)F)OF+Gn#P8rYSz)sXSVgczj5^g^Kx_#}JHdX} z;^N{s9xKfhHm9x#Iv~57TU(O^s5D>*73voyWn|I;3Eq8tyghje6tb>>B6fId`N594 zSNXg2@&pJ}k&#@Dm%w*eSXgk$IX;2(!i21_nv4O&$=vpKNLUyFkVm8eS42ZcUlybR ztUJ*Cz5?@I?N7}z>WTp2zYiBgDAvHNmMee#QuHIB&6mxYt#V+%A!T{|&OSP*LMXIlaf25ug|zG0?NkArT@>rm@V$t13saO!2fU?es^BR50j{ zVyr5+l8Ie)`bb0`^lWdiVMU|Cg5sff^Miauxt=Ktw_!uBoY+kKJ>$IZ6c1 z1rB_dK^bfC7H#pvYiV!y6Az)7Us-8qNcDIjEsgyV1FxGCe~?=ah{^haL0vcVD(vN$ z!@|O{KxVfbD|`?B^#)`Y%#qEo9T$x2#-9~)hHvZ$XmLM!xdez}otqO0t8Q*m2N3$z z59ff68mMtU0|p*)ad~Oy=x8)s?`b((pWGG6aFb=g4#8>C3q1A1+Z@&T%}p8L8WtnD z1|Vs>xVa4g%tqo&AOLzpNr#9V?ifH6C%T?jakyFL&b!s3TU2NidDRd*<*b_yt4s7r z`=&=I7ob{fCQY_K7lx{v;onvxgrt~PeI|VmOl-P4*95vOQe&;!a6^Q~z+$=sbu0~O zh!yOK*+jh>{5;x|#TAM2IC(~4VBOY)MHimgS>pK9=)fq|=kNVq2$h_?y=~l4fEw&~ z27{S$xRgA>AlFp`pqY+vnG%@ zT3cVmu;_FHqTclPH}vSIZ@ZmlhKAnI#r1Y~FMuTR=I0wmwI{dRv0o?4O8_I>=;@8y zgUPEXZ~zWsb7Otr1Vt93`5vMK78Vvjxpd$uFQ3FG_U6sKk&%&S>V-ZaD>5yf?bIOR zxXcKFfcoU*{>Jx*V<39Y*=Oywo|w;^bI*=wR9}4L*U1ihJf{aA-c*+3AB?LQHY#`yC=Ay>brIVY*saV2u^HZ234~ z8NC9k80Z!{Z8}G^-S51D3Z`$(wlkU|0H%G*>-NMrI5&Sox;&fne7c|0JGgPweqd(3 z_~$;P-;h@hy}w?I!Cj;ff!wS!R;Uk0?Fon^kZ2UrcYm));L^!Azi$Y26sxF;(8o$0 zLhIJb|AQwHX2-NE98Tw4I#U<+l2vtRXum25)NcuI60GLvp18rEf;GG9fLvvG8 z{<~(36dFdL&p#9VevgRACo~k#-`}6rsP_{HL~Jfjt%h?oI~Lo5_l}QKAp^V-654~^ zJplW8iEwRgZS}}GJ10jrLm`A#*&l+!t+JWXDhGxfwGz1&T}Fa(rvnNklM=#*4J7O6+#zHo;o?$#}?X1+U< zR*LyMQeGUJlJfakO_7lbk3;WAUae+-j!z1dekC?HwlI8y)jK6lpRI!{#@B&4K}Ujt`W1UiN@Am}5Q zf>6jmfAPZq>hj!Xt)CoXkJv=1xec4BY}Qb=W>pwOb_gMj?$_tq(;v^xzu$c#2IpsQ zcXt+U-eagB4-ajD6!44n2l|~m&F$@Cs_J{M<>chbZC37fgfkeP?Jr@!w4bhaYFF6* z^@{`o@Rzzeek5d6tX~kL+6(-MI1C_(0MqLeEU(q(C=(nIm4bIDP-7l$Pensb6b+R{ z2wWfB==_qBC7{YEcHhUvZGx&3VmT3yX1Vhj z{3BF751u^fingq6J6s#!vR%CgiI4((a_8kiPzZ(1=woHNm3REAVcBnf; zMTXMZ+1Uv0G7_9JaweugNbO5RBvF-CtxZixEo%dCLzaMfPR`661pGwVTn#QnX5`ta z7KFTnbh?pOH(F$f4aG$w6nxlEK!4fN*5(xwf?KRcZ((6^xITpG?(SY)Qv)p3=d`pw z^UXdhCaLmJdVq|*4H(!`d0I6QoL2905By;;3v~9Y(*T8YWr!h#@#*|B2d;KJcW;9Y;Pww{OBLJ5Twa6%DGKL`z;T6rswCn1v8Ui~$N z`A83NRjh1m7JL|L5%u>cCKAnJqrm=WF4tF=?JIljw0ZX)KbC;nxNqYK^k+;TFC0@6 z**G~PfISF3j{qcDa*xA{|JW}pajBjrC{PN^hJaRoO4YM51 z^s358{9G3IB4=Oe#Z~1<&?y<7o0+>L~|HTw?{< z=Iy$PimSwyFL@vH6Dz~x<}8g0WCg_tH+}QpUs@^+W@opS3{Jgbb@7_i7${|7ew}jD zRJ0T0+sm&1fdLVav?-?9n(ARI|j23oym*2v(wC`ycG+j4f-sCY8t>{O+d!^s@S&n)kpu3ElYaSiQ z!C@1~QHpk<5{U52Xm~Lv_GPR^X0jWYS!7dFhK8m(htX>69;yX;b>w@Z_`c2qql3$N zMPcvt>w90(D=FRk*z_fY6*E(zcOcpSt~|Siu`$V7n0Is=P0Zs1ONn4daSxYA$jyZZ zr*++G`TAveaZ87vyq~+Pe^}SXG*N7`2n%+L8Z53_VI)v^umAcxKKUe_QEDEDJ>#8F zWj>Kbbk0HRlC4tk1!C*Xe8ZkNG~%ZxhSNb#v^*jUA}%6knlEK}%5{v-4|jf#RXQdP ztoNp*{dA?kImht3%^NGw8s)^3g8naLCkqk(1GJPUjNce(v9YmT-Q2uNVP;re|SnUR?ag zviE<>hEF-V5~IT7Ff3Yr_a}=v=?TW5&<;(CDqHP&dy5e}3)e(?NEzx3%bDWm$sVYs z(W$WyCUi?R=Qd}g%Xc}d=di~yuy=pKu=wlZDNAzK;x1b9nPecdemgEmPooU$QruLR zN?))Ye?CEeum3bSG)%%-gEh=vYSigeCh>2QH02*^mNN{bjJ>kLll1(9{pZ^OmgP1g zF4t)P0~Ztjh*d}Fgz5A*w|(+s8%&RIPajFnB^Jk|SGOm6o*@?3Lh`{T0xxN1(7J92 znVY?*VYub@@Kl)DxUp;YIL6D4N9n7%Y3dV*I?;+pu{pz?KEH%%c1A*^jGa5XsIlb) z%~*A}ChBM+hf2Hql@K;>N-Wmn%L#!%SwUEydHKRWIDQ2+aNLBLAvX@m)DTsvK0Yr5>rUVG8NoXzfdBNqn&;Tq2v$V_TiZ zm(`fs=yhl|dnnOE`(GsP$3x|}Z*POtA?4u5wk>gABOPe9719;3{iCtIS8Z^<`1`s` z+mJq8UQ+t$HC=lpL6vd*%QVvca&qO|tkaiN4~R_l^q1B!@ily9tz`9HYb0XCzHUbQ z%1kZ4K6gJ{%2MOHFv4$dwEPWT8#PU4NF9-Y)(=@-OOf2W(eMJV1nZts;z62j#2rIG8$#MQjG2P7j<~jMW7*10^F}pG^e<V%XNL|4s6cTU1+Szlv?P_o6a6yXsl}s;F3NZ=h4$*xlck z<0Iz0TufN3q4TMtDJv0GPH14^VMDSY*OxW?FBB~>8EO;T_9wn^Z)>b`QqY;Igz$S! zmE!cjr6D><4{BHod{j4boWZ5@$Cg!UpT`*Y!3Z1!2diVZj zsoGjZ3dLp$QHI=FV6`YeKcdATi&(T^j0_fJqQwu$Ztj(e3$XRim28*E$bNE%Cj7TR zit{OQ+>OX~`u{DYi<7hSJOB&xLyjqt-c%P71LZzqC1h_IBgMOOCoU(-`?4}<_0APs zlUwc0bT(~|y7Kx~Q{sRAx8r{Zr8}$XuxJ48N8B$@aR<^XZY1fRAschaVIqsP|u-@Gat0?p=qfa5OC z4!U@8pJA}cKZvoBH6)9nTkIB!r4AYjBB@VqV2z#VucbrckS`9nP#Lh@3Ds48E9rjW zFZ18@Ozf8-$IQ$umr3E_hy+1wxib=(fXB8YWV?ZSPV6NnYR^p_fTSHA9V49Hpomvm z&$RkK-*e?lSBty!5gtyI8+&IP?|jQVjM(#?(kaJ>dYw;C?X|mXsxxk~*tgQrnLi;m z#WE2wj(Gm>QUYP;8BDbGT|nG=>i+qMO&yR zKY#u#w0{zLEBM5Up6PjyTA_xXRwf#^&fa z@^Hk3k9#95jPvMG+n4&H$Wp!33Qw}aoTzeNSl8X7BgIU0A3}7BBF#z&DWy`DBzvX! z@TJogbQpiDZ|#H)7_8kN6TGw@Om|()RP`J(!i<=p^*V*kc5~ zZf7iyGI~Gdx%AI=Q5NxXoSt>jj*zt@sF2wXesqd_X+!%V-rbb)jV*P{Q)uTs>6RAs?*kXU9&D&BRvj^LFwUleU(pE}G%wwa{*S!Y{ESw+UM2 zSj-7y6)o2{`y@X!2a0@;Y)QsY=F9Y4> z1rgu7E)@ND;{B5Jg{9vO^x<5t+xSS@0lTS{p1k3?GrC>VrYF3fc9Dk4?IXmfl}jlx))QD`y6%@UCP;inD`1jd{DN}OuykK&0%TxgFkLjU+4 zJsh=aI{i9cocaLisk=MAd06c%>VK1t&`)Dt5rB}Oeh4LDHXNDz5~S^s%$3RR;V1_v z_A@|&5l6%svGigr_;-@3r`ISu-MQ=1A3_TYlJ9BaBqjQ+)578u!}fx*_FT3G>kT zYi7&G%H4N*4AdODEoT1R4||0ylCkWPQ^!X~(A(ko34aCr5zgkfZ{Ha0H&q})9cZ+^ z%j{&;94KDahmO{E1)qUz;Lu{=#1>3D0s{jdPnt!I*Ps}3=%MY%ZKs4xoSD~c;^Yy= z2Y;hQuP8mpVm{j4B_SbsmHGUsz!y=So;cq2t;Ij8A=`V%NZd7_<@>15_?C4Ol3%ce zHN`%K2&fkDE|i-uy8hoP=*@k-^-ojK;cJ{r4pd+kn)KWH@wxq_`fLnEFkFDyWV!4Y z(Y*#{ln|YZF>fy~SphNm(0ryJ!5PzMOelf1wYB>$vrKOp+osqk>ItY?%(tZr#IA7j zSXRBd!>#9CRGnO zw{H+JZo_;4CQW0Ogy9mfAea!$!7#)c#VnQMCd_xN%^$vB$Y}U|IEe(1c>CdI8d*JA zi%ualUSdm#FBHJgNy%UUTnV;H}*n@ps;{bV$zb;;q5xQp^(qysJc z9o01gW=lOo`Y!u_juJ){gbQ-kHdS-dIR7=2Uu(_QK#~Vfli-Kn8Mx$k_kQIaK+kJD zoc-uvrN`Z(J~?Bpt0pv>>#J;JH@%ipYCQj$8*Lmp#8$)r3>vO{hn;DS8%vi0%_6$0 zlTSM4Pp&_g*rxw9ooHyG?qR}jww^4tL;Y1j1+WYCk4$VI@6JcWZYIMW?;S4k zaYH=nBg5pmyP}NDJ(wuEy-*B3LrLapv$c5k&C!+SYrPKR35gafT(9o3_t#P98gD+{ zy$Y0{*g?f7Zj0hj7tX78Jjz76g@QV-nuWRjKE%I#i>bpuWNK z69#&NW9|&f$pj+3K7eEjF)DuTq`qbZ2q3>KXKDe^f^b>6;%p8Vt*RQ~g2cdW^DPMW zc+*lwzog~`ahREF!MopX4#G2HotE2!eR$h>SNYej^1`hU3q zgnr)v<*w;vcn*zx!nYuKK|?Vr)!zV5_d317p1v@`-?^E;*4Z{1_3h zKJ9gVF>D?@Y#ABh=;5?xuSdUq8|mlHYq+d8|LN$zz-?R-8my$2R|&7F_PV!>(_6{5 zkt)?(rbJI3L)R(6&mSvd8%{l8pim-f2jMX{n~6%x6+4PAmgQb&TTc(Rw)TvnT7glN zlm!OyPOEKK!yWqnBXjJE|Z1^85m^7 z+=7)=jksA0;pOG<0su*^FjkEl<0LMvP4>#TA+38AOaASihZjty-o^(SZ9hX)6FqJ$S@(jwhP)Y-l)c1ih8^2ZMaes~r!pCDUTo}u}u8k5gk!rD%B@lZ8J%(`1|_O zh13;&yO+oqsI!mm=;Q=)ZfmeiJowYfpMe;{j^`>oCy)%n>l+~p!G%a-7D3~U;i4FI zPll8Br-WWmDu;(Oq?vC5^BEDTdeNzdD~G>kL|_9UXeuyu?Kt@b9F9+L2mW+)_<(6t z$7JI_r6v`QYfTMYZDucOaJL1H7(T`R5f!1tQ2WV7_a$A#bhXPMY{&Q9W$zi-h-50po|uTB&O@{UqYJcz|;EY@OHWcZ4CvU_DEd4b@~3 zutd+A#8+l#+>6X6*n$1?gA%{i>M2rltar2%*>XZx@BUFQ!&t>8N6>swC+}m~+mV^~ z;#dCq!L@4Cx}JIEfgA|2izDDE2Q0*q_dEsw19jRe8L@WjiRZTS1||ps22A620HL3* z^l9n=2yazjqKW!-E~AAc4jcU+=G0z)-`dfnlsF3jFpi{;jMpAd5u<$4M0a5cXn8p- zr7qOD)&aYLs!2jo6_`3q2XBcttwvID=Y;_EV?u&?nL30al;7YO1PHJ^p(rmk4C zofYidTrMOHCzczvh`F^qu>GyC#M5KuP?p<@9KlNSv9EFbgl;&d3zkxAc z3>Wezr7UtfI$xL`S?w>1A_4h=ctZn5RZ#JKINR5Mp*;N`XJ^OrS?+HSWJ9 zBGQT$w~>`sOA2T(oCo0mV!zPPH@Y5Pu56uTq@)7e#Zc8dCg_`#m|Y)84{wbNHMIq= z-a!rXe=2?c{Z1DztF1GyeQ9aWCASZ|`Ma}H^YonT+Zb4jCG6%h85q)J&U5RE&XO^I zO2>+<9H?D2y$AXS&TPk+)y_|Qm$;-_T?37zM2cL7b_RE|nmv+M@=HrTCLT1kPR{0O zw*G*vHsMufbSBJ$V8OK{x$$j^6EtEYuy_od5vnp^ zcKE~mB_Sc9oiA3(GbKeou2o1xq{w)H0vIERsT&_3AKkws8Sd_}u}E<0kgfaZW-^p1 zwB|DW7W>W}{Z{`c0F=w7Nj>4V-+T+RBryBX2U9kuTvJ8@P8hDBqoX4%zYtuKO6{zn zLYEVZQp=fc7`9i~ZxMoEK=pl*HmXmUicP2Qd5%r`?U196zkOW_CTdnQ$NiP zCTDPC-KFThADP;bsb|W#4`rM^$L9%SiO0F53u2P0$ zj&>%WD>mKTe3mg*jL#N5{BEJMB*3hlz zw=jO6%((Y}HA;qW9o#{LYgD+vsql`E)E7~fK!*`T+%tNiQ6siHoMSdw6^@k?R@mJw z@tE`H)e~+VZKNTu0Ku#QT|>Qt$!_B7<+6(_Ncjzrdr95zTj9 zEhAydacT8&zX7E^oVu~(+pS{mCyJ9(#xgmC+Ln`V7iZjqV}cqYMzm;q3s5Yl+VjTb znLPUb_PEcsKe{9M(6^yLLR0~tMgiYJ`z<{&-_!G;W2`8q5Z)|@LfsZZq@abMRkmX` zf3tvhmn$th9n4z##zT4ZY*E7v1-7DQo7UGaU8ilBt@=jJ>ip!bvZCB|B3z$)Sqjtr z{xu?>ASDE>7b3%4{ha_^g2NWJn#7M@i>KYseN~uIL&b#Vhi=tA;)@?#R2VEBPM)lm zY)ZYnI1|6+)>8MngJU0c@gz7d>h7m;HLb!QRm)w`X$s$a3%t21HwBG-nC(1Ab5B812{eMzU1Wys{Y`i$n0X9hF?IMR~g4tG+SfE8}#od ztDi-{Sulnp;1U1DZ#b^J;T!y&p{I_eLT~Q5Eud0%$D_@j0|kxm9ObK6N}^u?cE|P3 z^(hV2kJ%h`FHSq}K5os=ZoHP$wTN9qwY2(Hz}ot=Mo~UbIakb&_~Sl!odmHZ+bl+pz46-3AAr$Ff4UG-fYX&tSWchBZa9r zvae<-%upnO!uRN3rO!hK>$wILFolqS;rxvc z;9zsO+UHBmOZe#@qeN+G#2!G{@pxc9gn=t5aFdXI>sNqj7-G{62n0OD=qHd_r=2(G zflDL^WVnL-pTzw=QU9SfI+EGZDhtCsHhV`(?XVr;M&Dd~Xq!E>?%G%kKRn*t+;^L- zue&zbDbV8_9qUVSvY8~-6O&3+>iE>dw_xJ>^7;w8FNBB1$~x15)C>DvlIY{Dg#{Sl zI{kUKdGf&Rk{f>UTs$qw{446ILQd4iRYyU=1>ybr?IaPd2TvsT-ZhUhx^Y{)c;R|6 z<*>=+%sR5iMyo)QFG;knlq=DNfkzd`+ch=R<|T@Z#@9z+!)({&I=F*QiH7EXvE$w} zS^he$KrjC9Uxv!j17%eXH@2nB@&Vw0D|Z`}AC5RN_xGQz{H7juD~*bKiW(Fc^%~Lv zBFJZ(=Qz2aar%D~-kac1N9-^~LZyWTN%=8OJ^I#0|6QoWGRDhMHARk+t-n^y2(sIk zwvUG{nYvifzKHy)epe<-=*eW}Bf&=PhnCCnKjdxQ>o}&nHa_f~IvrmTeE(X6Y>sA^ zYsfiOk0B9}EJ5yAMZhwae0hWSAgSUx<59P(kI<<2KGC7`x(TdxmNBYnKS zbbz1{DuXlY$1#ogBU2j9YAgVnH~y>B=O9DZgFV*?n+eK21QTP>qek6-!zt5jBRXYtkUx%LX7p67M7cTx1-%9fG_PPau$ zeu2wh@1@SeO&vK++dBSlvfVPwjEp~-^jZMM5V#!-gql=|$eTZDS23}$lBMJM#5@wR zvS>Z;K9Sp=0drs=)6%IG|A15oNQM{u%T$$vawd(9wUrgrIR78_ik!>kSjgG=uUo5X zrLFPR)wv}S4Ef7HUUCD$wz;cot2O{=th&G+#Ug%*sMleiH-Q}VbUiCi1x5-$*L3`5 z`1Ymm;4cKqI3GBwrp{tD`-&8@-`?flz>J~&w(Bd;ncca~AKvYDn^$#Li5uV0;V+4f z1@Fo$%6HrPQ`&9kV=VMJjBecKagD&Py^6{jlehZ_o`7`@GfO+-;UNqBckeE@#_|B0 zL?vs;wa$&_M!ai-Uo=OkUVs09O^%B(BLM;UI3R)`GLQZH>qMbjAmUYX=BBl=^>K}; zY4w*abhM(tCJZrkw>F_U7|x?)5QnhaKIV+%(iyW>u?=5wVLGTo(l=x-a7KCIAQ?fHqd#1}% zj@RsCAW@Iq(D~RxuO%U2pHknxHDSzQfc31(LC?@s98Tef;xfbGD7ITtah*`0Aqij; zFAnH;yp@vFU(Ht4sB;QFU3_nlr+VOREgBvwrHb>7Xqoo33o`*Z!zG4s_jg^>8t+=~%732}{`U@4C|B znXjTPe@IKE+NX$x(8zuXs5`$4EPsg7D!bDz8vcIzrl7XxQ_Lz{9+2ib-l;o`XZH&{ zSia9}PN;)bZEe4F_wqp6o|yYh4UOXJSR#rEE$vl>*{0eBXToS`Ij2}SU4{Z>RQ7bi z*RyBOG`#(UQsi`Xbze`lhu+|fb&FNrJ`+5L5DvkbVy)E5uWq#I4eT?)w)y5qlNBub z;-T|@#)`<&l4nDC=`#%vmLFfAXv0Aa-YGSkTi%+e9!cwQ%fcN}g83m$KQr_8IoBoO z{m+Jx%+(L?{T|n>dMhrSrW(ubdOqhFl3#{43qJQ)(Y(>M@~Qcz^*6D8Z}B*+a)87t zPg8IEPhj?V!Popo&!=YjgGDh{r%zQSg^8|lLw@Bgv%{V&Yn8Q zB7OnF7I;m7RvslaHNr_-&(bpBKa9B1m$N%wU?ZwnaXsZQ(_CNw86KAz1P|xD*|Poz zAZmF)5fH^?!Diia{c2dplQ3ijI&)*!WeE?v55xp)I$;<>~X8Wff%^OUB)k z6mdk`ak`no8JH$jaK0+Lu9yK9sztm zV<$Lsn&Cs@W;J{3vFY|mjsCc_)Tz=oy3(2Bm|dxse!LhxN6It2h(*w_OU_?jU6m<8 zn;$8A$b|1HcL>LLnIQl}X47@?cU+EpvxG3G*ZRKFY*$p#ZWNBZ>tC~NujP64NTb?b zGO~7CrJ6IXkXG)AH(q0Z11SgrWX7gqpJ`U^?m;M_;EsY|%v_=-1%k7t&&cRTQ&ESV z5>RgiTd(*ReqU+?cRJIo#1qOj%NdJjb7D8Y8r)6MU7X)Cb2Gft;as zEe*^k$&}X#v10|cL`ZlWiY+>y?Ba8l!#$#@mbSlmgp!xd2Z>gPeJaUeL#_E-X}(@$ zx^&l@hiA9Dp^xAYwf0HHr=VOZXvc9|naM*B!gFQ5HJZ}FJKd&s+l|Ik46>%ms z(RrBrnR^Y_;wt-@XrE(Z(u!w9(2)Z03i2)>3oK)hef{#~{d(y=4;4U~xIWDO77PI9 z@Drf#EdT>G75XED8t2xnTZ}*e1-khg5OU-f6wE;!Mwm*1_6VA)j9YO)Sxg2RD}ub6 zsYnZgrZm>d43z>>m{I}ne6Mz72Oci~<0qxk8P@|zfbGXXfCF&g5(up{Ds8>YCrX(> z2}7fl{RdDO)w++o2q#8B)yO~z2%S_vJhckw(KHE*EOLie82^B{dgn%MI9C;}kuXz{ zJB!=RQt-loO7VVp$Q$U5hQ8g(3}?u@rLOCV&El}728E?eh6186a0z&lqU@n+RV6nA_r#WOknej^qmN@w}@T)z6wO`?a53949>F z*6&}++KR*r%kvF^MTUT@W6Y?PFcM&Os#b;d@?YN~;pK^$z`y_5JxLhO-uJHalLt=g zxVhckwwA-bCUJ2UEwWYbgqHmuw=I@UziYOvD{!4)7dYOW+sf6nVJj*q&i~z3|9OHd z)jIDErrvQB+eM8D9#V>Um_lm%#Q3OAj*^~RPgH^^HFfqx38pe7<)nD{vU6g=T$`!+ zI3pd;s9TD&9a6V3t5ej`q_p#KNM^(M)TLAA#IR>6@}<=toz0BibQGKK?#~*rdn##m zHRo|z7V3JGJKje$h!SE`tKw_0`$e4D|CUEneXAVZP!mqCbu|WH6dG zV_vbI0REPtHgwaHC*v zCw5`c19SDz*(@g~L%o6-?n*AJ+M|;eq9#i6z1F=2Tm~gy-KomG`i(r=joZ0VoPjsM zM12sCHeIoRR7<}@u3JXuW25*xX7#H2~GoLWA>hp&TM|B!^zcIw01O#^DEa^;Z{Bmi!Nth6Dnl2 zRQDyVO%;+)YiXH{7NIfbzCMF5BBsA|8DeGqZe^}Dk%b_O?Gf zQ03!CrxAKQf$9rrCsM1apLtV+)*rH`Q85Ao5-~6ZF4GzfFcBIyK~44v5ZG@FS{gbd zo&9TXdpZ?{Nm&W7(iJj2Ut*-@sMIfCo^!?UhEj5|;i;RNnr%lq$HYX54XzCooA)9? z(D?!ykfP8~ERLK1DZlDxwaWC@A_Z$5}1XQuYAS!2(>W$M)jl zpQjuN=K4qVsA(P`uIc{H>vFn#Jyvy)Pt{Qxu%N9ZJ30DhPIxl>P}ZjH zbvt>9kd6554bh^0{H_MF4JKMz7h1u3F?xEI5;-&*YDvj1KZB4?yskf?H$o+4#@ zSdS0?`SWMA(w<_mcXby4?m^Mf9bmStvS~_=;$8N)Jn>PTw2&;Yd00?>g6w@L^@xj( z4y#113+^wO3ZB3Z<{gw4$^E=hRql9W8Bu3`&Z0&3F2?YC%KXjr z?5tC@B8YO@r6(I@2*ji>a@6_?|0M738?9}0G>mBJZF)Xsc3y^OX{{!`ldl%HcGwuE z`?zpN>+DcI^@YmsK@`l+6Se)rH+F6^Ql>)BtoxJYa?%Q_cqV+Xf~e@h`GM!JJ2htB z_d8DZyR%}v-|wZsq*?i0iMIYXhfu3%lak5?%Yk&GA4V5t1qU5ve?;#tXnh!>c7$R` z_KYl|_)|L{4`Se_plorp9%yxB5}C_m)pYyI`LX_2VL<^gj2GSA#Y(u_TZ8BUe~)Nw zV>9nQIW^zbU^ilQz}-Gt>qqJOf@0Qd#2Fc3G-{e5`rszF?Jpq|lr(`K^E6pLYf{=L zGizFh47I1EPz5rpU&ns`LT=7LUjJ_G&n6NK|M}4==>L@AnkzuR{Kje3mKzvDGPoY_ zD0ww!uBGLzZ7B;aV(Lea^v7un1EYzgu?ZE>X=!u4Jkb`2ofiG`l&h5Jzx+MUIYsdj z1Aw6yWP}vSvvV89YfHCD=$TORU4PrBwbl)EfL0zqM@bymkIi)>Q4$7d@Ofj3)2XlF zgTLhyfOr>xQ<&EeWy;m5N3$bkkCk*Z(B4lhFK$v0XLzj<9;I_y_tWhf7VGu~Mg4p7 zEGbJ=;617E!%HE+!%NeLOmKysv9cb94F!28{t}nUZBPu;6xY@sKRw&)n63%a^1esW zQgbBtK#r~&M;G^@O+&wUx?H~;9mEDDQASlSUrQ`DLdlF5mS$yHon2Y*_6pKM$ZdZ% zzDfxQ3WDXri=$h5=4NL4FA5r5Pba~LXSXp->wEgUs15%3;n7?Z4S7k-MzhasSJet+ z#?OF7r@KKGk^QEnXeE$CqJdROcKTF+8YqT2O6qJr4`36}E4(2wHnp6rDl={U`TLbP zgP;PFY3@2(DQ0VP%+C+~7<4W+OvYZ+;Qat+2(eb>chD(l1NX2Dj3+AmLW2q)`op|< zqC%6ziBdOd?@d&TFb#!JSF*U+&FllaAghjV#Z9>E-P(q0OM^xk=+v8<5AP6sq*QWf z(Tyr}3(@~``QqEXB}!OOIb4)bF%PMcz1<;F>tP1W(F9BH*%qKSU=1-$XLQ_f`KNpezZ=_O`U(l<0||B)*j4mG&RS(N|94N>Jbyl6rIar3%*8!oy;R5&hV>} zR+6VoIEiVC-q>$T6qbvQmXx$%^A=2fjXab_i6&$k8ybG7lz9KDb)#Lh_ej4j%VQsb z%A)FGY5_z_u%?4e1pMbQPIun%k~-wxN)dIWm#(~Y6-_4OFP3j*pl2kL6Q(B6dJD+N z$Yh+1`vYCz1qH?V9}MCcS*uV84cmJK-O!s==|_6}$QelW4S#SxznAq+%m-^2c_Nc!HOXW(zxgGP z{`9~(ONKleRiAVx+qSmVpkPV!31MJXus;-=ek+UX6iZ1XWL)Zp1Miv*6nn+l7JCc5 zEYSMLuiZ(bsNNLJ~P3A zHF(=+Z;=Gc^3PSVMM$OTffq*V%1v?9AP#0Jg1f-7Hx)$5=)51=sG>-f=LH*5AP(E( zUg8CuNm3y=K9-z*LqW`kV1{9WA1h^O68_y?@RjME_sMq@;TnVY9Exte4}0Dd00)&1 zRv|EPYqI6xT{(IP*=*9H!KEph@c-VZQhSruC&Oh$>szj&43Ys)tC^1yaZeHrVD*7h z6Cof919Ds2;(thoG~d1V+{@v~xDx6FBia&+Fgg(TsPSlbKJ#<+)99PPPn>ms-Z)YlX}& z>3_!aTF+hWiBij9-)bhr#eF}ZNkQn>a_I6ZYbdG)A6MV-!iljqZhNeV64;^a=QgD9 zrh`C2RAO4NwP37%jR$Ya3r|S~g8&qQ>6dvL75%BxbPp#mSvU#mg#Bcyt7Ys~b?QUC z)+NGY%uacz(KW4^qefK{?Keq49}C7A(Jqgt9IX?n9G*&JW~Vzdp^ll9j31UIQh`It z*r4dI{U8i`M3Cr|${X3BulW)6CT#$oRCoIotdnF-IRsBxZU8`2IoeB=$kCS*k~0O- zl)58y$56Zo=}lVik^)TtK3e{ndtYl{RRCq?T#eCG(i3=ErsFA)F=ZjlBmMBj zgJ>lW&CF)Pw{ZXD1Z}ZKNRg#BPaf9;3^2qQMBq+@!JS}Q@PWg(=mCv@0!zyc4sdo7 zk_DwkSp_{05Phj7RJruND~MqDV6IO*gu@Gm3ftU_4$u;%r#EqVxtNR^WKbmu4Ce3@ zwOf9UoI3RAeuiM%)pE80BE2`VxY6glbY?!)X%7T`><4B{;xjt!FA`cEE5YUqg5eAR zEP!ICdQFs`8jKQ%5jK)M%lo*=N{RK~B?T4sWtd>JfmFo{$_Z#TsaOOr|{KJ9!!OUE0 zVOpYwE2Imi7VKs5a7x>wA-L$Tm*$HNYc*#nW%Zeql%G3_r6hYiqNV(7qRD1_QA7XF z0Z}J+`NuO%U&b~fQY@u#jHWH|czX)-)u&KkS}rq7d5pBQz)&IEzUtfS2jA74(QgV4 zC07L)mc*%`C@v^a zdL%)3a&9`6l;fdH>Z^8QBo4VzoFS>7;G`$JJ0YutnQuBp4FX2H2;x&j`+lSRx?Yu; ztiJqkpk&mis$U<9Zfdob`0O^P-5*90{fWZc1B3EVDVWosSyIr^bskcDfHfc5_WNa= z$2_Jjr@{mWk*?-jG&A4#_p5$KuU?7i8$zLDudzd0A7_ zPx~|Gq`xO+hjMT3Bn_;6I0=;Lk5X8<4uBK>Tc(Bq!p10#4_a_PJB@|#xNw&LKRa}R zUzK_&FmZ6Q8V}VsPNEF$OC%fjJ*fWxZ7gwd#lJ%iPtu{Ud2B@lXrA85Tq9z;X3~T5 zLdkShE8U`}0uki#eNg{--?Y>+KP9|{h5QNR*ZZRn^yimz?%}dWr|(jO)rMjghbWHN zc-)r;f!z1{s?LuDLR4RWyis(0?halBd*j|~VOswA%q=4gBtr%}u%* zxO;PxeFHH*yn;F0FQB5#XBMjJ0$^&0cLaayi%&p6-4?zk@cj&)5}~zEZn9gJg&P>7 z_5lTb`p`6GENj3q5+vpmT5#-}wp7U?LP}+2mDp0ui)kKdZ`!$#ye*Z!w*+6X*ZuIl zR1N++j4Jcc|713B&4SN~L87iNseZ}6HPH&A$v(h_60~}h<-q46YKR9OIFHpwMZWz~`Z)(03*PDvt1w>!klrBFr)R0vWLz@wPc2O}#7SpS{v-&A5kCH2r z>+#tZiTfpS$6|`5f)VE$gei;?-yYqRI~5j>hm8h-XTnqYvF}3 zVO7<^as<FJ`R}24Nm8ETuCCfc~=t}Clr+8{i77qXm;0HXSQ*@)<3`=YYX62TH4?V zjd;6i7=L4T50l}8`$(=vSGU1K+ufaIKc}VWjKLGLS6UXt{O*0(0v66q1%!pwh%0=ZHZ1Qwm-7a>6yO1 z@JnJaSIS=7El(lLo97KRwZ(+V$GGT@-%*q>H%{XeO^X$8AYcI1-J&PwGN{1v046y- z)l2Xlet+hVA2iR;4t5S5OG9A+$~5CIFGa1aJea(AuLJz;wjOS2w8Gg(2nD*W`@OQX zKEcTl2DZ;;Szu;RpNbPKc}3X&Gp>nrieC!9&ar>4r*)}}>8}o5yAnP1cM?guzLs6?6C$=pcw*V-OOy2qX7uC5^|Tv1?2 zpN?y{gOtzt#tN{T4;K3qKroTRjV%QkZ()|xaj`ZSTdmxk^Y+!Nh2=_G=V~jDt_u~v~~$x&3ft^U_xgwh^*AZN8=H(AvO*bGa;hEJ^h0Qvlk_{wvKuiaKk4{ zAFS6_T+T~fo*D0ZzDVQ@zk9T`VbQdjMx7rmo^7u+Fdk&kST6sr#-tXZ(~^Z~>O!Mk ztvMdwp7ZtQZ2P6G`;U5JrUT-{o9ZyWy<|h3-t=$NQ!hhm0J++SRZQlel?=vd_weY* zeCSrPy3Mm9>PY5fvT{tG=z?T-Q*v-+c`BbB0%UtGMitXD$7;cQ3=5M`%B*lC+KLP) z1LaoIqJ{UC8R_~nZu7a75poI>4k9_$l2mGCf#OjBsDG_ml`b$tE&3i;drQr-?OhVtUo^9qsD`aw#qukE1CP{<)NgBO{v=3 z_?Se=cc`f4`^n!1`leg&yT+Jg(ZRA*=B$mStI zYZ=?A+ov$FUu0yB+mg5rc)SQ8s@T{^W>X>lj{9p4d>x2;<8ak(mo@c{<_(JrF8sVn zpJ_0MQHV72kC~at{kRHLPR*r|rq9kzmonc7xn1f%M37`VnuQa7xE&++fBE`MR`7*v z!#%?*Kfec%Ds{%Vcu~PX(lhJu_?+uLU*+teQDrp=xBS~iu=}Q#arCde(80lBY56nf zLGrU8SuwJf>t4p`!Plmk+;A_*doU~+O)va(I~zyEQ+G!HuY7seh3lHv+~wXU*b@JV zd;_92Po@XU$YHGw?}Fvd9LL`8dZG&4h!g`NI$r~yy%RE~_thRx5uCi5kv-E$Lc(s< z`qPTMSyuad0f6}(`={>*HfirbPe*TOd_i3CU$yc8PXTiru1i}t0d0?xagDrvm6Dll z6pLBZPxC2<$2(OWgMNN~@pD5$LPF#b&`@L60evHcq_04PQmBW16(DCi(B4Zb%@BB6 zS#buHnn}s7_5(N-Iv%YPlqoCf+CRHg>Mv=!>KCT4S1ZJknTcE`2iR%|NHN>OYkrsxrsplW7u~b}Yl?mFi^`Zor1Uw`o z<56$=?z45H2w*j4_Zx0*{5f>bo8FISGDd-(_djsNhQkf6bP3!sKy$=eEotuE>u$ID zvK4B?Rj0c39h?Jc5iV30F_IZ-p7fn=uF{|9Xj&@$4r^=MX~hT{p559#x{Y@Sd)@sy z!KB?8EhgLtHN4WRt2Zug2@L1+-(j=m?Aij+2=2D<)0ezcOSHWSLEIJw7`-nWnc}>c zBSII)Q^-CAv$LF!DcXqwsW+KqkXWlZ;pg5c`R6NqM@>zf*&I}4O|AILcGQ>6j~v^I ziZC+`&Wy)&+ESuM6zj%=Yin7OnTCcZy{H1wcTElP2Md~BkL##=H8nP}_X+QK54EsE zx4IWE@cBlRW^)-Q5|yR4wl{6BdQ8I(x!S^43v%~WP(f?>tHOoPzzjB7KHB8nTVLim zpLe-%nui1z1go)|TdAOk8#DZ6oUms0$-`wLp^>58a<13Fl-H10J*lhrKIH}8Y~o;xt!6ROqLayAaU4)tfRcY^T`8UfP%;u*}i4hUeiU-;_+n#Ng4u@Yru2soy?OdQP6b$`j7Hp)**%=w!@i_ z{$AXNyGus0r$=j(8oej(r?Cze!!h`yx@&mav1x#jLn%_K+c%AU1e&E8be&+mJCrV%x24-cmnk=#pQ!Gtdb zAs`?Kc(c$Uz-RiUFJIld8frED zZ1nvgZoF=?l$RqimBvVCc9V{G+YEjqxV5n;pW#Ws<++-e@9!4tNsq5wQ&dcTR5I;A*Zh*f5$OEYm zh>3y0?O_WHceR-x=&css{PbeQ;kO~Ej!%$kX|T30%DKdM7ydT9qxIGeq*@k60nc0U&o?z?xgkd=dt4!HI1 z^BW%+k8;}&`&S1fAW9~>;7mM>iZ5D#PtlI0iF%KKfFPCHKQy>`aeJP9b@|$HAKkr? zv{L(U?&Hk-d1o~Bg!7}bPIGKi6ECX^(>NBxMn|nZ&}laGjNutMvQR$)iU@`(%^PY> z&{WIIgAZ|C!IbOUhHAq%`xzP1%H^WK^47ZSqA#g1EjF-x(;8aq7f-dN-^Sa17GEiX zDT(*wwD3ZT=lK?(}!$)4b(eH4qw->AgR0nhl8zVWTj=Zp7@a&i&YcW!#0VR%#qO3E$^ zpC9O-=IS4_b!5dq4pwd2_ckTSe=|q_mNROC1FrSnx<_I?l(E_HrouFdjzw##C&SAV zfSsDy)M4QMqbn+!&R677&&&biTdrETQViy?k2G*WP3e#?+@Mv)-_nR=IMlNZSX78V zLN|cGWoyaKJIh7*z%>DZ4V$Yqk#WbMr}^u#iGl`ac%iwLr9otKA$a ze7*!|(tzIxsoCR9{GTVWbrx{yHa54<54wpHD~+73r-vpakWVJsQ4^mI*LTH@WKia2 zzK+lF->$-O9M8jj8oD&=3dKW4z1V5(QY-&+J|@XKRYDvk8fLg&sCKbC)@eaVn8*p$ zawg3;Kg2(Xo$V8QGwGfg8Zl^@IdQ?cyDxyEHi_RVN0{?fXcto&+2M_N9Bh?+^%MDi zgqOSFLi&a)sV>E zHJgRynX&^)Jh$zFR&T!v&lpr7GrgPx!n&f=|LdpgyIZRNQwy*^8RlB+y0N)6T9btu zE`z+5KBva%u-Ia{E@?%Zn-byvvsN7lKNT6=JHx>#~?^Nf*4M1cMG^_+oML={7?d{u7fMN&ayy`-MUcWt#b++6M zjlYO{#8LMxTy@E&ggUynmCCrm$T|cA3#-)iwA-QKnuIq7E2fT!$K5^2yx#8gV0mG3 z|2sOPy~#ay6+`gKz^G@)Z0td6%NQ$GQo$nwt z@zLvwZnm~oikP*lf^ns6FcFu}o+7Ti>?00#_hOMox#1k!86tvl|w)3&hsnIuP*PiH;p{b6#Ue`gq|PTGaB8?`MDF=>z!H2m?A<3r0hzx z+DBWz|Mt9FaF81T0Ra8w)AfeS2}QQctF4&7@4E!f;LBBu4M$}KMwgbC59;`dh>|`! zqW~*8d0+wDCo7HvAnSt_OMm%2XKYs>8Ab!TGmX~@;2rg4Q;mF8B)z=&3zpo&Ul$i^ z4h>|2atLdz_?<;{c^fA?LHi4nf7EN7=hv6?U%}Zj@N{4U>kAZm|IgKSF1I_j)aRQI zK4Nr7R_q!FlF&Iva|0l*>#_Vs zagH_)E!CmK-p8y;n8(_;`1spJ1~VJ)-CkWn5r8ixO3rZw_<-H(4M^mWwqf^~&g@0!Fu~j% zrJjIP_iShFLU)mP2q7#qMQ|bk&3QST4XME+g3vxlyOr{TTu+8sa8ZyjnIX+O zmvf1~OW}<^_J`a_fwQf*QQdNLJ=qUaW*|Z7qjzQ^?W!3wT|dk#)Qv@dBT}&WNs~ZK zHaY!o>04}LV*o;X&xHaKUKcf7-K=M3=9KS`knBwr584a)pO}3K%)_&qO|)jY^F?)W z?nUQjvz96E3e5x6d`WTIZQbp@alSv`kLIz5Un4{0z$9&u$7c2Ob_8YJgK)%5wnGG1 zj~DMC*A>>o_v>AwD{e7ce24SpM%PvVftwUjO%x~wbmDU`mB|v1AI45jmoyInnEbWM zm32EZ(xyZ;e5gpB`AgQ?l1ws=fH@X1gU%56{`kav;&X*b>)i9b0MvJqcE290l*T8e zkX{>IY6QUnRuGAWAi2vOaXY|+tQja{v2uF=Q7((c=F~&)r(ST4b?s(;(2t9N-xa-O z0>yd)_y-_p_DlO6MMT1HC^TNi%=_cy6gUul|ZeQSkD( zFo7Ur1PBtmI2lD`jIh1T-!)*WxDw!TIibHUZx{usG*_@>iUm*aU|*j+)!2UI{x~u= z9oGs2)4<`)Uyn+d@6@`%s8dMEP7;&DPb7Q&ncP}YpCB_jAwsag$`S{g3$42AXolwx zCodn9*ISLIIrvZKL-eEjdYc2A4-d0=AglDx*AOf4oh4rh_IPVX8?i?%Oq3*SenT*mrY_ztGC}AiQc{%|L zg_;QGh*IuSu_EhO(k@O{!O&~52FR|isVBn73iPb}YKJiy$t5Xruh_hvtiN4dw62YG z!$n=@Nrcyl60d|Ng3R@EIGgtJNCCI3#+6n|%P77#XTJFv>G?{_)YbW~NSL*QW_`@W zPu2wrILY`#h$Iv$zsLsQb4zMIGg9u!l}UReR#6N-XnbIgS8Hc(pNd3Mxoi|+*t&3 zFDZY}bZXKJv{5evx#+R}f85}8sI;|(hf5YL(SaH0sdXBxzy>&*GZD{&^_X6*t&Y!q z=6O=pCk=0`b2eU`vx3Oj&lnDSL# z?6EPIwZ`k3$e7M{KKHW;A=J?`|3)gw^l5zm(3yD+r|HzTHo>wIEmnL5j7kGI#jU{) zY-|&I6!7==_W-;0x@+(^ZEga0Y%R}a(auNmtd=Z&k_VT~c7{+H*2u{4Y<`TMVA1hU z^o=3H8KRBliUf!e?LKxq-Z)#x0L2PdeU#&PUB!06aj@=Mz+`(|XA;|3i!=SY7|EUe z4+Cud>e`;5nIM9g7f(-WqQMuQ)V_DDDQj!Hh!@27x_Q$Y+VQ)pww7P7vvsD6Lyc}P zI#q7Z^{GMP9)Jxn*T&q!Sw;jjrvgO*3P)m~dWEu};f5*ncusNxAWIG&5_DM6a@_t3j=U+sX7X(F z&~;n>sB+=o2h46KnN4ol?KR&I0QPxViP4`|7ym{RKYE|xTt8pO=%?u#xzQ9O^HI@J z>Bik5)}bJ!HwADCc%KrD3V2B`%fE9yiO(~d?(J=8Yqc~FoUQoL;jN#iSVDr#i-(O! z!5aCFtIQl0roAgN)j5=WyxZ<*CN(7GU!W7;pvG0$(NfPZ&*ss;zfl`~Q@dxgjHJ?w z%s^5ZB>6BzK#H}EfRJF|b!Ie0G#d?GG&>c`->h6<(UEqR7B5b3NQ9t%KvE2?E07&v zd{~t;W@l$dvy^Go?`{@$tL4*y|3>F=$lm33Ljp1y8#&?pG#s7vWFT@rxCYqDF|q>R z_I|vQ(kgASNajyT$t_0hGcBSLmPt^`zhrZAHg-4MIAnBz{a=M+9v#4}&TL$ZDiw$| zuF8eKRmVkqKjzzA*kYcLbwcC zAssKP>0h0j9_z|h2OOuhdnWJ9Xjz%JtrmVlZ>bx=_^;)o63E`b*w|$ z)%qGPPd$=&T+@!n+Qh;Tw&HKb&^5NKi)+Z42tBj2zqt#2j(qFqL8Ok!25{A zZBU;G2jA%)zb2}34_T3KJ^cBXyMaKlwnTPmX~Y!_EKT8$GMX^GUxH+;MTltH3iMKcX9SPaFNfG8{ce8UdmQ60*; z7b0=Fxq-FuIOYgDy7g;VAlR#QMSGaDs9O+d!*CHTQ40Z&ItPa&e0`0^;lUL(wRm6Z zd8;`@z>HM)^?o<8;WT*_`SaAK{l3AvzLo7|Qbtbv9QCY33tFp^otHtV3TkUi=3WK8Z~TfCC(~e?2b23> zhi-+nHS%lK{Z%XVLB>O-eD@BtAj?sUqIl`B^C=hsLB@}&05~xj2Fnc4T9{jJ^xD{{ zVE1>Z>I;hrRebZS3aTmP7T=-K9^2qEaVov{NzmFR6GZE{yDI2PG#fbC?52lxME%>)>EA5K^Y`2XwFWQzLyIDHSx!^GURi64%=x*j z$r1pfX!%VjB@9q~G6lugG2DL^PB!n!ItcX^x|i3N(|CY135V><4s;QNc`XyzSY_MY zB~UFu{l*y5zT^#8RRkO+G}-1@uoH2#Y=uDv3q3PkY6)+TRpL(1&+88_J*`J+oa@(@ z5B349%mf51P>usi9i{X@uShbQm_7`JIS#(Nwl)Q=vAkH4KT@N~`lIFZJK)kin_=RqoT&ro#me4gb@FBYRyl>S)E|;)TbC_(ZDI zYDd%I1>O@Igi93}|IXR{gxO!lqx$Q&^O_V&MT;vefXu+F-i=MYMKihmi-NMEl0 z|0w@`BM-AzJ8jT1jtWXJ(g_^6+r4J1-I8g*sa7Hfr#jK`0H(!vxXB7j0t*X66O~xg zrufio4wiwDGhpFBYLDZB%1L8iz&)5YE)ooC6GmmT*l5ov8EPw$HrCvG(jZTp-oO1e z`fO`BJ&dujJq}$ALUy#QB3DU?&!73Pu28BAfArM4#e1WOM%iDo94bBL&5uMa?lE%R z%yUDM%y8!-1(*Ivo%Jw!7IkO?hys^*cE1Q1|xMb=t<^ z&Y3a2?Z*p-q^IDEVD5&5s!KX0P$Fy=**-{8?9u>MxCeRXH_v zRsF}IkiO7V`YAyz^hRyjvD%MV{(e5%!{x-@vMQo@%Z<;ZVoui3E%SSI>vF@v zS-(`7MCbHy!UY+8whzxEnWiEx=e;vb2NC(k^NuK`|k&NE)8cg)JN@>x{0P%X{ND|`l(qGHj&pn>S@xfT6uA&bn zWBm|n^jsTY{A7(QAlfkGH|{-Jx9`~*c6*=Dc@U-^_^h>PvXIV)J)E=>JR*jB(WY^M z#}ONB{Jho8Rr2n68s^}D&}6(3_1W_tvHa~@qUOim)7f0kcyMS9(SZ+@geX_i9abN_8 zna$E#yVlHso-#Q1gemM`PWNu%QC3QSWu_E?M^prq7dBhsZyyTw-`w2TX+5jxG;2wI z88z5+pgnw+j;sj8iD&6*;C zh;Vie&Qo9fhkJN}QzS=xH*~NbEUaTtttYdE>2;%|G`iZ&r(R6G!vKp@|${8g%rvgIGh%X z`Fw;5^4n8wX1=`>9juVT=Y^3nEwH>-`7jqKUMY7ep|-_`5?3(}OYk7NCNT}M8f(nnI@K>zRR~?ZWH6kjIj04Hf{bJ6 z$hf~}T7Ix*3w_XF-D>P~p&7iryQKVjH^s_(K592^nYknL&t=ZUY}&Hrk8^X|zgR@c zWv|!|^&BIV8zPF|3=iG>OE-cRT3TgG2A_I{#BjVgGJY;BBZUezWoLp2$tb-lsKze;tR*BK0Yc z($&iKRA3JdLJd+J)pRO>yk!>k{}I zSgbSDW%vD=v3wIQn>yUZXq^6NN_}6QYdT#nAXBONMOKE4b{#$W4rTS}xd{p9^(X|% zbJr8Z>>wZxKdL>MTJu;BP{;)_VPD;FHtX}I9-HNI46B$yO_JO1`up&emMV6Fg{s%p zUH(%KOW}O78QDcr=BK8Uzmp4^-W#o>0;txSqYQT^fGaUJ+dK>HJ$#An zb7?NXo?}C)>uJWzOn#A&Cuc`+P>O$sABO7GGw@zMae^yGCAh?1WC{cA!i84uTg7+x z;%(y<{>7_Ty!WGaydDWK{!W(QybPk6XbQbCuO(z`j!l}WPA=HZBd;pP$Hc;boV3g^ z0bQee=Ox;FkBO*_J2Vu7C^zRw@~qBazAcln-}3&4PU2vFZ;^*z zzGU609i5d#5{W|S1@eZ8B#qFWmLf1Du}*Vk*d#ghUl{n(&+H z?tEr;1}hFnh84-ni<^(wb?m^YP5`5gI8k-9r9Yq!nGbqD zAYm?MTj*0m$)Xk)6lV2L^@PIvN1i4V6`08Qw|39oI$c0}&~qm?qt!9)a5)vLLwv@n zSWD;^+p`c)!AtyYGB!x(j~5)P^$wE0#c~$)UyKf|RF!(+05T4sP!}s(Ql{zx-74Rt z(-2H%xAuM|zq_U{^VRK*O6Qz+H>mN-buHxh)8HT5fgH@|w|A*{>o zr`{Il0p!lGc;L-drpjah)Uj+-nr5ay>D%sf3BKjd8N z@_IbXR_;jxcV`VC+7E&PYzy9)HX#XJIHGvhp=|k9iZ#}qjpB;q>&;|fz+uBfC&j^G zaBAtvm38|#v4{B_MVex&*v>@G&D$XP=lh9^V|TGI#;eOaq9rM9Q@)IvPZ18HpkuI9~Hg|b2ta!|rUHaFj5x;4D`_=JSg{SJCyGyxqyYt7|2@;!* zaW;#KX=*0TJf`ChYwD$F<2Qm(PcK zFABD-M8>{AZAwHk>!N-T|86c{4ne@oo^d3U+`8e@ zW@>$e!^u|zp26yLaj+?=T}x@s4!Z>%D*rh*fP_ZN-QcY@xkaT(^fr=dO(CK3`&Ny# z7hh4xc{!{L{pm`8PGeCR!Y)|AaHb$50}~=C?Tftg3^-&P?)bFcZw<9ub_aw{4{0a5-4+d{0j1Q;TDiA07-Ix<&=A zYWV8vcu3MfKQJPz3OPiOexs0W0F`#QZOFo9o^asAC=)6UT83iI0WkOFCt*ymQZ=2A z2N-*+k?rTg0bLn`&RPs3=jvQb@@s8rn;N|cWE`3VqC~vby5XfYfI~+b6lI}!mA6Fp zj_|U1`0J%D6|Dfu=I*nGgw>R?lNkL*jT5co9((34fQoZZR@_URJ#1+6i`~R=b(g>H z3=td`8*5zd7>V2stn!YDt)DrdrxKd26{vpd8B*4X@TSL3og$QO7u3|;Ki%NbIopq% zrSm?1^(nmC8~+FyPZpH2=PA#}EVT}gmPz_hQ@y&8J#Kwy+QNq-FdK&#Envq{j&FXw zDnX*$T@YY9IZKm#MuRTN=5*xpw1?0(zYu_<@^qT?$ISVx1~~B%5k7#WE>M8eqiP&~i0aBJFqqo9?0t|4%r=Zr_a7?(KI-p4b;g>a zTWMQypoGa}%N^PEy$Un0PUo==1fIBN-QSGmcZ{|=Blg+*1T$6smi?qB$0Nz^ule*i zYO+~&5D_IEpQAU_ohT%YLnt}V5t8qbv%1^E6a9}no*g4VkWAnD_|tWOpvg>6z(E0S z5|0;TQ3r1K{zljh*}G1&yCz0Nk0gn^@EeqS@@@?mR(zevMYooztRh@o{uF&J?8KmB z|7Dma0_(yBA~roLUkar1i%7GiiJusN#w-QM9U#0} z#L-jr6A;WnS{3;Hl@|&Y+F+cMdeKzAH!JM+u|QAm#a8esC=_|G=zHCT?11b);Pl#-Sfrjg-Xc@tcpUXyzbmS|y9 z3@-PCVV=)4i&*B`IbOGwEG{Au;Hy|LiK~UlCu1PXhUjIcQ=O&PzLwy=M*a2Nakie6 zmzgZkAD_WIaeY#?D>oJiYERcBxZl{-FS7&MS9T)>ETxn#$iJ5@XO`9kDi;JcXw&23 z;h9a6_@q<)1T{)#6I6hL8SZp=oa=ub=~IS)Q$WT!q=Sl6l@l?ox)mZc`}2>{$zWdh==3@LT5T{urPWSk3gM zO_%7k6znBo1%!Ch+;MME77s-e@y&T8be2R@5GmVm}?sb-S6S$$3bIdVa)QX zy)WzW_VSkp2M6#T7iv%A+h|kXPaLzVtT-Pz2FChnswJ_J1!R>gwQK&-?8sbMHo3pQU;JJLpVZb(>(uAEda;V!8w%uh{;AB)CQ)* zg6cVtSszzHaG%B`uArjve;JvDO-#&)2_*v-f-y{j@DLfov9a{>zOnw?-@u}s0|lh+ zhRY$IGaj#A)85`r-+a&Lelz|?{C`}Fycm_}REaDW z5>4c2}Gc`@ZKm9VAB{G?KmRGs1_YzBHK2ymmVoPEFUM}Rdt~hmnCpg3Jih>~+7zC{d|M@;WUDi&9g8xEU1j=@9(d&_mA#SW%4&WNd%xJ0`h25>3<}; zAaT9({4&c5ZkD5dhrQC+M~(EIt4|SGaby+~S;5>@^sGOPK}4=_!T@towT!#UeW{R} zg^dj(Mnajs89FdbS!^jB%9g{rQuh30;28TaUo`M6x36k+PeL9;v2(WS8yc2&Xz4fk zRGcgK!h;pM{|sjUV6NrAxyJkq_=;eRBN(0r(#0U;H*Nr!WaUyRylR4g-}Uwz1?3qa z&V5a!Dfy4(^E*G^vZ4+V9-irtoy*+e{b#-MZw0U9&HN>L;bjOplBjYArpy4%FM*;C z^rDyGkx{12)8b)ct7wCp{g3kr{$bBM`;RCik_UZA8F>t&;S|e!;b4SR!D+Z3I85qS zCGV=M9MyjA+QNge#X%AUJL9_!V48HFL(<--7tqI2?!8%vjEKlD_e+^&{Aze&wf@cc*R-_im*j17r(V11Llw=mI9^^f?#Z$Zt^zceOU>RKk71Fe<{mfDO3G$$hESq}Aas{alHC@7%- zJorlWM{9`V%viy@soeY*m4F5b>>a9eC_p=9_~G1Y!X^MQ|iokZAHbQNLQS^b=<6LFr$ZsPm)$<^N}RvR^df&sT*; zRsF|y28Z^cpVVDyDJY$a<8n(ea8C-%yrhZGS`<^N1Yd6{jVmnTWnB15PHj044hZ-> zysfw&@d$<7^vkC?A0BZ0V84_#$_aVTB;e*mTJAw2nA{PCOOwZ4o zGy_{;Dl2MEsSGW>gkDRY14_>uz!Ab?dP#>a5tN@fzAL31P*v*rY1ES`O9DDZ0(^|* zD5Nn9`~A;ShOR!w7zuJ^o%Ft01u7ymG(7}zUteF)KcVW59SR|#*JTI28UYIuOcbJy zuJFTBmv02cb2GwJUIzPB7S8Yg_aQ*^gsR7tWw{=etIKzj!C6Z5HDiW6Yu+Hvp9vF3h`Zz-aT|XLa)66SYv&gPc9S3+5%gB(p$^ zm1n~d043gjs)}XlMe{6cNeMp2xJQF%SgwQ*cC zCVqOi_tyM*2bv#%z8Zeuf7!zYN;HW$U!k3C-2S@xmhw(KNvK-ryB#8J5M*Bl8%BQZ!Gcp^r zSp7lz1rb`aLS{Bh!3P0%XCiFn#wVDE_OKO%n%2*3A`63lIHdL2^hU+KKl3b?Vhg^d z|Fyg-Fjwbn_a8G4&Yot2g=4E^t1iPZh94xC?$tuceMv=C#@Z}!LIC&8*=T6s#I;$w zu?%-8>DWfli2s~-IUv_7M5uRFQB3b%&51EVu@0C?H_GcVuzdf0s+&%AtX5o=g6kJ5EsCoDh6XPs|&-}?i;<}@wVg z%zQPeoWpA_W|mQko8VC6eg_wH4d*@PM)!P-(n@jpBwX^1MwQYk*e_uK z#0UiF|C6|IkRFrx#Fww;F?j3@0Np_f3-sgC$iSOM=9AC1S*jH*sawUy9s$;St>9Sy zG+aLObs0j{_srfs@ZvA!(Bwo#MbFsZqEWZ0?Y?^Z`<6MH%=|4H8qD8x=>%{cwD>5M z0zaxCcwE9Rkf8RLCG^`s76%OuC|r5vG0-qEUp0bxdpg8OsoV(p%z6~A2VH&h!*K06 zVWK@dOk96K)6`jI5#iXa+=~~1Jq@6G7Nm4Y;9m%dD}>18L_G^s#5UsNN}!|7mVo7h z==x+qtObZ)zJ~jZArkd7sw-{d0<+vjTKWqDRe&rZ`SCn}^U>N^XzVOV6u%Dsh-Q3O zDX7e63dEyahm7DcMU#=1S&tF@ER0q1pU^Lw-ap>4%`8rBS$RLOctvs@&K3parT@MZ zIKzJm=VAhL8E~Y~XQ@r?ZT^zF{EMAZGxI1c@=N@00i&)+kZ=e4xU*bt-C%R!Yw;us zCi_~qGF_vj%NX*tb!{Rvxo`;y!A=F{qJdp73;?M3;YVA7e~8?=fhGL{68W#d1L6Ym znC-)DSg=O7>TEwT%w%+!6JsK=SUmPjYLRsiZhi$0gtn6XPG&~Y#*v7O6qc{Z$Ff?# zv^fKt_$VPOtLpaVWy^d?x>*^CWvfD^A&?JPBgCk=ldK`o=EU9r+*r)2=(PcrxI|D; z&J{Nz?0e z!F}O?RxN1lF~hM=utFx$RZ_yZaN|>=!2~417;O|ZG&T5Z@(PqoWD2f^FRlue%)a8J zWiMYx33Ck9cxnKSyU1JN&_wo18_>!Jx^rfRUztq_k1}KMYt(GTV=4Xa9@I!lC82j} z2TN1=FB{8>IvV5Ucd$M3AMA6|aHuJ{xNspQX=63RWN2zZ)$3TCTK{#gI}bWtBn@F-sjCRw7%3O<0R5EZ4FYbzQx z0ob4@-7E?m$i0BW_Ni4Fe=t^c5{{PQmqmzZ#%C}s2;v`U$QPnf6GPAhtRl^$2UTM? zIe>-iNCDVtaNrFMt$=u11XdUmK{`4+nH@+9bm{3Ay5{juwtWKw3uCMviIN1|u)?JY zL$kF9qqV~(|M|TytSQBrZ=OSfgA?ODTQjh+b5d{}>k#?o{Ijs|)Ye1lcEm|5UJ}0zI%Fiz+IWFAvbiK*e=u$4SRi|)-cNl) zv*$JBXILX@(VRPV0}UzZe5Yu2#4=O z64;+nLVd7pogvpzhE(EHq8K8#&%>a~vU7?=`5mxeDD|KxWI<$VV)&+fDv7c;lGo=a zmz&$wor!AJ29L%VZM;b#H#5AZKUMHtxU)NaHH@!iLC2kIloN|trQIwvv{_!T$|^lI zj`+Fop3wwUf=Za?CabYmTHkDBp{p@A8+_xjN7;k^+_hf*;iN?o73A~NhPtu0umzjF zP>T(*8tDuNciYd}3hdi8~e}1sOinDQY?5g-S3a{W;GJSek8}=>h zn^Ub0IhwpQ*a$V;^(o6EO7W>aJoOsT(qPk56{^90vr{wBb;XTik??%LXY6PS8Cz4J za~1dH7rINEUTHF!EZ(|W&ZvKG*{g19n@lP=vxE%@Sebpr_yTgVfBo0 zX1&X#P57O~H{-D)tTQZW!8t6Y9#hyRbNSTS^r1hz+O;3<4rLZt&$M4IjUy8c@|p2A zW$%9ldqmh@{oc?4N4>)IR|o3)$$9>v%Z*<*liA(+mY12Zu!=9xGch%l5(-5s<@7Oy zk?a*V=4^NX6md0Bl9HBD;Isd#ao8eFd0KJ3z#T(fZmLJ`z9Q=U*C>W2V9l=XY~ss7 zIG^Siz_H_HE$h&jgRi-u1p~=JP3kD?c}|a4wQsoDr9C-D^RZr5`{kJ!#msT{rov<# zU7%zstSWhKy|p)7AG{kCHBD=;r#H#BD3ttv*VGROhhU;$%d_@9x{OTNpF1_OIR}dX z-}x(&^96E(Iag3!8+LL?(;{XP>Xhs`y8pxvzccv;B@A;iqEbt2nxc5-rk9(|bPL9} z)hAWe5)NXaQ-yoY??vqKFi&-R@hgzd|ME##z&?>6D9=WojTm{FZ07pr5hZ7;@unm1SVp? zX#`y+oVNnjppZ#|=_U`3#9`lOp}FM!wjc)q0pZ38x{Z$uFY>eJsX+~gZF}@E>FUvL zn1Bz|I9a4Y7 zC+%ZlKP4Aur0JueM{*wdUHP)_%xp98vU{_DMz>)PZeR0qq=gM_3;&QQyuFSj)5vf@ ztUgtNv$eH_8laxNXbh~3+`sTgDMx3P{DS7Z{5&r)>s#aT*kW6{(K2z)c-fd|aE^bJ> z;^w?k75o7L;gsdPtpbJ?*lrSV!Q;>**yi^zB@Dr$Tengk?B}dx)(gSi+PJ>p_46*d zwYe2-i-w5!k%75?Fh4Cgv6#fb*MIjrD#db^Qc^hcJviS8HS7`5S3U1ueqN11QNENob`kjU|QUgpqd@A}=%`nK=RW6R>1C%H%`Q#Ag{!5&bea200TexR0- zbQ6v*fzABKvbWS{MNsia`0V|$^7$po(F`j1&;{NC_Tus38weF6eS2j;raKn@?GfwF zg23DVv?#%>V<4=OR7bNIBq=Gm)cBAQ9@o)2YijR@`70Y6NRnpK>dwJWC+Erl9aR`? z*>5d_TSnS2kea%B{XXO0CVP`e;BvCYn!GW3x0F)CnQy`CVUbn-#e<6k zEe;AJ$rAq>B34s@frEh&!zC&O^lo0j%HH8Td&{l|n+Bh376hYZ?!j0KSZ_Qf2RBEC zr)B28%pmRVRjfcgA38I-ba1R&UnSx27=e6bIY`)rex#WhdwDz`-92H-k9X>7c=-!_Z%d057ro?_d zAZ+*y6lHuoRS;+n2s--vPz6D7zC<2^ZZ$zwHlRBQfOjG}KA@w{q%r_BM%~S!Kd+}( zI+~P{_~qmYxmHHqnJ#J*KTq6d7@q>uGIHJebYijkOUBu`6{w?s2A$zJS7U)R#Pj9f z6nW2A5qCyD{2e)0WX+DRv-lE9RmZ47br(JghxbHCbL6`;SC>O z0Ahm3xC*9nSaa87$OG*(lgAzvBzN5L07#LGhsw*NU>wcetC4QF&(&V2pcZ>&wk%IA zl^E!FC>o(qcu!r~^aArcSwUmZRA71_K-ZAI3Mh{0NizXs!4Kg8gjV~`0b|L08Jr*> zRd2&W2-zUv5=wE!5r5OX641Gv#?<^)D8&taup#jS&!aWLLKE?Q)x+!XEh3l80<~(s zSlcdkX1~f)TbG4UA?6#n=VJLLP z<&-CXw+v1x9+8Mwed&ebrRXa?a-iHPU&D@6De_#@H8Vn57RL!$RU5xEX4AKYZEBPn z++uzF__4*t;Agq}IEBlF&W9LH7Ufo5h@j{qt*YD^H#*uRp|5y451HR@w?^$H9(3J$ zj#;?fXUorT>7Jg;*kGV0A8ocEV)T0L2<~2WPI3e|0oG(q!3N@DHdiO67@G8-`kjhK zYIWXoUmQ>!ON&pf_d2J<3W>cb`G6+B$OJsK_n;Bb#f1YfN4Ff*A%>1*v#{$}M_?dR zaEb;V26=L#0I=+a;RFN(D@zsPG1b>KC7f;xs`iM?YH-HW`O7Nj(C37DT6{{?)`p;Y z27 zkrMs|Xq`G}M?@VW_1}RxJ5+c}4gZ3+Dt8nF(u06_iHX_2-~@tIx$io?I=UdV`%RAT zv=01&^L3OVyVYVpGYiXDrZRYNQhIu1x5lP9EK8Kqv@V%n|Cu`L)D{VGAPS=R0%`$= zI+k4rH`S}le4lnV_(f3x4TILb7Wgq5~I>F~)iaPk-hML{oH z9!Y;$kyP5i#ulivrL+vnfsSc~lR9?>Ju<^DATCuF`6p&{1^`feEOjKFb3Rpcqeh;> zDZz&v%qN9dFKK^|Oz+b>D4yhD^1P+1si~)_U?EM<2SI^O9Ml>Zyrnw&S2XO(B4r|p zxkd_z&YGG@okP^pD`1lA#xNyV)gqmBuh{1WoGY4zT02@4i^ZG^mZPr*^;Qs@-2;(A z4^L`{Zd-GzNXh;EU#4cr@{pF_yJkYMv#!RP<6o_P43U95SV$D&Xw@p>V47j+(BXum z>G12XnBq#RV;l&vNGG9`Hs{7M(3cur^j;YmT3+2+4NKqmv$38N-X)J$eu^=_c^bbo z*_uRBwJ)Y=OnPl@F)h7zu!aOgVc~HEvcO~Y7V_719}DOCO3}r7L*wS&BfE{3jI<6M z*RouHC2@(*WIibNMx;P{}x8p<#mD1O~m5L!H}@~PnycX9RpMA5uO%dM=n#W zX2829Y2|y}8#3WQASfs(F;)WhI~XWd^WhWAVXMdGaU*G}Vp2NH_gl9A7in)DRn^+P zfo?=WrA0*nK|oqcQc_A9l$1t7y1S8Xq)|!{1ZhcWX^;l#lJ4%lb9=tu{riq__i!-A z@wi!Qz3Y8vJkK-dTtL&Pb9n?VAxB$G5UBz(GdDUo)iYrBnAcs%l4k6 z;B8bgO3$lJcw{d;u65@#F88t`jzVvWvTiMw@*DQV$?Vh@{Ajy>)q*}Zm3Od~_gb&o z;tqrc)se@H6TFl3lb1&)QV0a~CX0lKa$x-v)zF;}A)nAD{;=_>bH{CrihO%J(O@2= zqy4oHnM#r;7A_{o{&YE^yDZh`KD3lT1C^8V^*7Y=@{#eeAy8N86OzfK)3?V$!$jY@ z{9MNyA1Wprdn_`=t%lwELwXP{o?Yi2# z0iN7}%mG8^%`R)$L*7e5wyPQle z_4iN3rqxo*t1@|l^9fK8#L2{K2Ykh7VF#5GWA=wN8)XoJp(7>+3#5`s0|JqWU)1Pe zhGY@r#waFvkTmqld{g2FcC4M01MsTChL5m)hVm^Pbgts2nP;YZ8aR7#>Y&4%aoWz8 z<~(?Mj!{5x4KcwxL3oIzD6Us$ zp@htrNCilJA>y=q*jp+XAt<6R3+6C4J11(MKT_oPGwfRoeGOf=Ccv=LcRzaWV^5mb z{A-5nr{l!qyNd+MzDj7Q4y{`ad=yGvC^Xf|UZPi_f{PVW$c0`HANQlEBff?RO}gY_ z)b6Ygic!pUv3*G5X7S*XWkv8Od&R?j2~^eUG1spjRanm}mT-tKS01;#%t4+)fur;H zkVEwviVN`W_TSW~uzQ%uuZiAsKji`Mj$nz|z->e9}8d1eF zn*1_b20_Q$e%Bt9Ek2c{EkOxE7KEZYmQk3~BpoY6r+=5d%%wbE!0CR#Z?E`u)HFKK z48up_8POaHr~F9P@Y;fvP=h;p(9@o%*buPgFg*c5ZH12)XwQgq0U+F6g1E<*HA*y{Od>fB zS_!qf9M~JYUg@P(g~oj@>lzhUR|(8_j|5H-pUOf}DOP=VR*EWfwB;!%bgo zKAu_Rf6BBvI4uhFG}hOnjK`V3G?t)6ri4t|nomi$=4X9hN6sM-&Z^D`1Zn+Jcr8w| z-@W?u;+&30eBl|}l}a@9w8FFAmOniAEZcgz3hcCvt!Zso3qFe`#yQ$ylang|l11fc zx>jbFxZ@FN)qVblS!j zUgR*0RPMX3YwS=^)gBR_;$Zj}=deOj71wo+DatvP=?I(pq~gTN+Oa-{a$sihHA~z4 zuQK;#)^t*;)^m(A4(d4(NjkMM;~=C#In+G2;0*|7&Q8yo53ePVXI?QvZIpMKv#m-J^4DYb>Q#pqW22@yTRku{}=RjD5~}Lpvto-oW6IrR+=Vw=6<017>EH z0w^{{o||3lqBnJE`Xz;$Rj5S=iW|d$PtX38X6}~y=Na92J_C@Yb@1Dy#de;#Vw zVfQN8%Aw3A2t(KYZ)?ayD|M0AO|ul*gC_|Jb*V2PIi}knbIQ@oas1rsUeo(cuZmk> zGgU%td+)dTPb)f9=TYZvqeYZDi_4#$=eYZi#tOP4P!WbWss4*ASHDVwh)7ZouAlPV z!6Z;2NWY5pzex0KMEaD!H}73Tw-Z%SIvW2bF)XH~%y?*dg5^WaPZQvJka5L$D`)Ac zn7+P#O_>d}Z1IAAQHvI5g+m1k_BjHOnl}51+T=Lf6S`agz#0OsJn63Nw~UN-&p09J zx$ztfmXnUitV@yCBJeOEcQ)Y_Jf2|Ncd+Y-k`&8k^-a zZ^g-2jWn~pD6ElceF|M&-PO`edv|XM^|w;PG7UOWflvMNCiJaaVn39Ar)w%{D#Rvt z#RvA{*SW$E(bq9Y9~Z7$kdw=MKfZ}8iZ{BV8hdzJjLz5KGE?)2bmrI4T@7wqJOBZ~ zx?@#N4diLvd#|rrZ6P8u2v$oukDrVRPe}&o0aT;Tiy+Q_#=5kvy{)WD=MF++QWNhP zxAcm^A37dBq8At1ty1+xH9un4UW(`&5AnSV1LCJG?_TI)(?36lm0r^>p$gj!W!q&W zJ1I2yz2H+^vVTCoh<@wS!T-5KhL*6L1diM*Mv0kNHVZ7Qvh;#@Dr0aG?r=vU`kCqX zEd+5p$CUF1R&a@kFc5)3K`i6WkjAVEW%owY9k%VJzdDvZ^zUhJ;~2EbLLnRrmJ?Cb z2G}}q{ev||`SV7h|Kfa#o7b)jz5q@wXY=m;J9p%_^Z?;UC`;3YNk?5WrZ~XccS+ zFDv(FX2|o1{dcBD318^zLOzJ-9RJ@EV?fU#7MMV^TsI!_>#qfpGjx$~u!KFv6&ZCq zR?=RqKo~>`^i#v`@l9*r5VRVL9DE}Bx3JNC>Ob$36G~g;MR{vY~gh-fQR9C zwm?BVrlnm8zm5CfxhP1y1`q7jCB-2G1aj$_f1tQ-bbUJDN5R2S^b|F2?w<*5nXdU% z)prah*8R*?ba1(E^Q53vlI9PWsO4^7KR*Csif{P$CtmmZm%^jX9bsWs zbhdKEunn5}0V7@{OYMER+@ZgF6FAF*?knmpdExO{mrFr&y z+LmGS<3F#f-`(GCx5cm`r;IH)2y9C;V@zPPpwMuer}tA4cKpqiq+f-2-T2_D#%Xin zd2y0YqeWm~TU=1u%{=80B!7sEcd}Z1t*;t*3Z2{0kZ%q)609=72+@uT56bOWUvV(e z#>|`Ykr%OLI!?PEX=V_-CY@`I5Yy5kq3TM63GL_^@xqR6Un|hB`S=u?9$?QeEPR0x zXxm3eDlV!b9HOVLER2lZPXz=B!_c7VFYa{|^)fS-lQ}@MKB~j$>4jeDf?*0icC2=y zsLxjxOrO~HUepg>D{~qq=i!sOtaaa=5Q7~Q?42{bVEz&2vKjB%a#&6gBewSrQ|Bf6 z-q%k`d!)2H1#A^Q}C(B~fqC9pMR%Q_6v}jQ(aB~+E z8EW|EEwM5nX(4Ssjg&^Z(MhHIHZ_UB;Rz+;%pc=?317>P)A(uirG5Ap(#(tKZ(JAr zAT0U!ooVg9;hZPu%b_<1k|K)t5;3U4IKNVz$y=MNvPgu1L5!nTCY=%gv`Jc%}{_p$10|vH9!bEjc1oU*yuGYRyX-X72fD0JbuHL`bixe&Z z5j%=dVbm-;elADK6;u>e#N!gW|A!5FVm6Ba6|E3`7@te`fX!ltLFWwqE#Tb%!P<7`@II&L0~)bm6L z`+i*^Zk>7mM=K=}eaZg$HuW4b(B~*J7)!P^T5!Ej{0GSeJ`JkZX9&g!!8=>OwjMO? zhm6Bhd|bZfmSFOzn8nsDLd$}Y2Z=^Q_H4#u*9m0bu`Q1j^*=+>5gJ_;CbLR-k>AD7 zq?FlvTQtmv%Ky=l$Y(8jf)-sWe$I^jka~b+BgcrBpZ;2p>9+(P9+#!Z}@Y_*^(>l4lwX+wNNrJ!-Vr?n{u*5kW{rv$LvrirBhgB!8IAA9~(+03~@ zBDexkMxPN(z4*5OY}p@>H7y+SG&EgiRUZh8mxs3M6F$x$1I&{{Bzp+#&G246Dnt^K z9}=B!hz?`OI9TkAI0H=+Ye7$6Q_(s<+L-xcHE#hb-3?0lmCJimoX*ZpmPg8q+lRzN zzQxAHp?%)HjQZb+I$)T9K?fjh3JeQ_S<)`a-S%s9z=FebGr;g@T+!E4sh?utWWaHD z<_ioY46N73I?Nx(f^+E`nt#4B+-n%{cC4Sqscic?0+2O?7qQ}^Mq3M$sl%*^LyB7` zL4jNFRoCTinQi*{XJmv3nciO?>#fJY3kIBAtN@M!LO1T*|t0m z|4!@te{1^0{Oa0^sVKjgXgJafsX>8R77wI{9aa4~>Kmt{3&9B4+2EnKHfr6XVPX<<$qw`x zKhhga?D#vZQFFA>3IRb!V`}N=s-Ub=xVosUWLWz92Lp}vIh2O8EL%78G8Hz zV^jt&qvSElAKxtZ16e<8fVBP>NtM|7EC6gGoxeyKH5r-UWicC9M2wyWWqYs$&_8;x zA%OF=p79N=&Yd8v>mDslyS?+KAMdHhj2_@D^@Z^-|E|vr9NYHb!F~<~#@TLNp(2*s zxl!vb!TrYa9Itcw69i)8%=GWVT3B0b0fpVVJD20JUGwv#%K*)n&x-Ev!S7l^z?M@Eu8Nl z(eO)dVVHv(*C)z0xyOXOr8lJ9`w#vQ9fe|w&V=1JFF2e+!b@CJSr+Thvp8kHr8l_0;{x!YWvXe?%Fe+X zpgoV1chqjEH4CC)SK zY4D15bpl?&?ZYkR1Cr7FsyJ9!d5VKHNKJ98HRXKc%W=R1tTL;JH16t=LHblV~!DM!OVgt%D zD2V*ce0azPhzGw)u;QGI1YDlb=u&kC0E0iUB@l5xPkr{+p}UohO+)VzNqr%KnC?K@ z0d7Pl)IiD2?fMa85|faVPFD&O?cZGUOFJk3$!YG5PQ~Xt^l0qw0+XRGXh}ZAY}21& zZbX0~A6}_|ef(8ofa==?TBJ=7G-$-F%Fe%nEl(!lU=|Hn6>zkV~! zxxeeq!i1HEVx^8z4*D`-QQF+xEw!ASUtrwG$H_{uU`i-5vp(?IcL}eXW9V>-uv+Qq zKLF3Dd_cwp1fMPB;Pyl-W;d=~y9S5Gr(&F6(S^30wptl+L?=`ieRe6dg!10XDr?;9 z(`rm?Tz$JyYI{`L9b|?aUbB_Gr$;>eNHk=Kp|3V%`cYo9hH_0QF+_rI`V3ye!RO#8 z>(8w6e*6OWI*eO_KNZ=%aj5O;5-0|0YJ?Eo+t?IoP|`uiqe0m^4rrIlErX_L9Nfn?WfYG;=QshV_6ygNPTzwD&RIg&k2vsr{s&pjaTNdU2s% zPDvQ{(nGqI3*!7D^Ok!q{pj)i0Uc&bWxOl)pLUKWrl(VfeFC#mxNiBibqA%rF%Gtc zW*JdYQG_xys`!Gq%z7=DAn@)$eG3aABI4UjMJKrwIb{Y#DV$ELhj|h7HO3Y8MSua} zjozPowX59kz^sJTLbjK+=^`%3;-ywD1%~zZKWQLnYXLy;N>oUCC_W_%s|^Cr)>aA- z694A~VKCDA62}y}0pkqbvz?^Ztdmx-_FNOiI-(*1`h= znLD0`s^^=SOk!hTROM9`(ZNtOVh3S(2k_x&gy{CW-}`k1$g_nd@In2#`)(YAfKkzj zy-X%gSvW%;nMJOT>rYf_YJPx)CIeyG%A^v|mNri9W$tkF;8S!18Gg&A6N92rUl%YI zMD`SCz-p`09af(y9ts&2bh>Oj83tO~??dlJ*v%c7Sf=D+khu)<)256}L6oFd>&A1o zCENZe_o(LY-&yyj3AQPH!a2zi1{1D}m1J&vzcO`ts@b#J@N(|fgkz-uQk4gvNXk+8 z`i<+5eY`oi@AK3ZrgADxaVloZe)W&crhF**Ng4QJuf%C>sYtbA)5?_o>lU$+&1&fvAaAR(8*-sIo1Jq?SLM2NzJk-O=^{I)l$f$O4SU=Wp%xFsni^;%0y zD|7C5N5{gPq@?64Wn};bUaeW9`Jli*+qKTf$gt<`{*z88Vk{>v73tl(noo^{jR50C zuZr}+n8w;2~MScFzbMeB2(}g00weuq(yFbOJ6iB?=Ez_ zDKmTMk45BPW)1*G7ZyOM4_Mz}&d$zSZH$%DMX)}=9I3RYzdY&jOp}Udv~qM5%TdmQ z5Y#_{|MVt|$t^fcf-JY0XRF!=1r_bH^WNh2{=Uf3<|K>zsonZyReAT9EZUpiIzwb! zgWp$NOxOtj0YoP0PcPom!V*_-(bstS|Cc2}6p6&)_NO;QLEeFQ45Y%82mki&fwEJq zT@Gx?w)U)>kq6Tou~)guInPB$uCMkVj^jc#T{9{UuNTZtQLf};WyMeAFmL!Klh|9J zEdXQ8Z@~2N*sY$Po&dGHmN*7=x<~P;sS)$@`jEQJ)f`PVmQQrXUQov*N7je43;v;Z*jA}ksQeSF1+?y#!n)KZETgzO&W|hD7Tnloh zRs!?eYY3fs?;B2QdF3YNqv2s;&3#|RemL*F<9hyla4U%2i`Q+fg_+Pc`kVFiSc^ID zxYf!Q1bwe9c>etP zgJ=5Ud0*0>z~VxcR1@68c0D@jA3{k<(8cX^vi9iw{q-IKjmB}yI?bgEYRAoqpoNb3 zIX?oetbvM6-@3ZG(H=55*^mp<#jcjE(PC903sGtQmuYfzee;nBf;>IZaZ^D&EcR|o zBHau1I*$wUjq%cxjq>U3lciKWc+vyz{F0Kpr0)B8{R0E9m6es3=6?VF&1~@dZs;SP z`!EOmfZNbr!n5^_u3RRh(g@DX_fnw&lbs1HU&rP$E~p6@HQI0x@QT(ylpL|c{>v*4 zfjm~4C?PgBmW+`xU$C`1g^vgh+5x`>Eb+l@N=i6-BjuK)a7vW7^zvfabXtFs7cn+k zfVY9sFwJ9Ku%hA*&$s(3pHN!!u#l(u7lr6R>i_#oC|i`6?`9G;5^R#-6P%fiA?yANh!Em(1)>?rAHyv zel|8XFK07=PuID!SB7Dh)HE>uCl*-@ZO}e<|gJQ z8k4rA(-})l$xE=gkX^k5Xh$|Z9X9bD02?Er5*fxRdh|O5h`eSSJ?aH^FHgPv<-2#^ zBuIKD#!8I!BKO4aMSnZjn*RMWY~1PEQC_2k#f2*~4E%c!s-J%sy$cu3;GC0x{2XNM z8Sx_ae?jv8KOsLm6(*DeG^{@F0HX_q6L=Ge&B0vU+~iP{N5o;4b@W5#6B~?A6s(D` zwYL{_c6RnrtFMCoLR)&deR<{+@D0Q(;}IEq^YNr!K$el8vKD|m{=`FsNAC;d!iO*E zSbK+i^`OlMQ0zMBq>;M(sAV)UvDR@aq2a+ON~yn#i^^MbNJtl|bX-V>(?l^~zUuH9 zm#O{)oTvBdgbrW-rR4qqBm!axgcG=4D2MpZdnM}I)~DaqlKI4`IurYWR($5kD?Dx~ z^W5}m7QL3wj$2a)-0wyT-#VSHWU|1Sad|YHtIArv`5%@KS^#Hjq;~o4FAeP=IJD8Kj^P<{98}F(PxRbsWLdkzTZn&_bE@sfx3$u zukS`CBxLQ|Ec=5+)IB@gu%D`9dHfh*I+XkV>sJbRGV30`qhBC%9-8Cj<=vi(5NMd5 zCWTTFq-RJ$3?pkA<7?-rxAi* z|Co{ju>i1y602@+jort}%tN$2FYcwnkcfBPNkO~2HYfZlDk@JkEAQe{NqZIBF4W1w z8~I^1BP5-~g=adP-<-nd`r+fpTLc6Ic56de6fZ-6Wxf9TcVk0yg$txMm?XRpkghTG zAu9~AezkH5Cti1@KjY`wW>t>nUVAh(yqQ2)h_9bNBf1hfTfro-yluGd?*KpEH;I?xIt2f=x$NM4`5e_sm^Pf65;iP~K1$xOhyh$24nrJGcOh}KU&!KuJj%yQyAbLy24^KMaCd zu*_o7R5GijRJPfxVfQo5As!JVL8HD!I*RUXiQ$WV)5}E1%bT7eZ8h*=1ukp;i|P*; z8!e5!TLJ-aXr4TI!uA4kUx0%0>Da6o|{^Pz7Lru3%0YNv6)Wm z_duqcUfTyUcK@grXzXXTzx*2U3xlcp)lwd!%wjS)9>#vvud%Vum6^+qL&oDxEP1<@ z;lus~JusGL34h10v1(P4?r6(iLm<<$uYEL7bWwC4g5W!<7@%;QTx!!=ANhfbw1IoW zM3`tsY=rCMzvc3MK@+O}0`_?mM}G^z}tmuNc^R)hOrLd1+Zh3Cq zujP@S8N`kJeyf(DaC`cmz_`3RCmuT#yqH=q^c#ev?(M&i2C+x+vGey$xD3omSoqz( zGuKK1(=092?m$TV1NJ4_qbfLfXpb_7*CG=W$3N@A_TEB!G~9~|g1Ep=;oEfN+JsFr z9LnE(x8&MH8pICYo4i0kbyU?goPR)5ISuX8meYh%CsXme?=X|R9Z8(Ao)Z);oH3>R z{`FBfv$N8_bj#DnT|H{+*c$wu?hXd2-eJuEGrb*Q+&TUImG8z>Z^$I@qobpua34Or z1&9dv4I&~_0;L#;(jPv2h{av@h3u{7Q4w1PYz6i6Bv=GRzVB*Lu99l;1;d+S<%KtT zH+VAl<=bRCos4l2$})HGeA*@d5073FAxrx|Ex`W=Y?|Zg-Kh2Hq)^eG*2jDYyr+D; zxPZ+?{FxU(qT7IkGWSVJ;9iFS2oW=cL7Y&qMGU)TI2l2w7{7{1n z1|m5z5W$=fv!Jgp49e`5PE4^@e#iFmBPdr9y&?KDMP+B@GlxO ze}1Rljg6g}Xj}lS^v%JLjoU>_5x2l%)=Gq4!-Qd9esO_YVsQvQ;&XNASz|)<^pb1az?CqM{v{AypWNHbDa*NY0DiQRlx~YHxMh`JH(@z0PFGBla7|W!_+c z9D1qnKRCkPEwZsTT0(Jqz(Ro0(j(fU&Dq!v;+WYbrEwO^Kg7ry65v4XR>vRu+XyG8 zL_jzp)H>!uhG-hHG8KM4!AZv!|J5gWSO}-bP>p|UrK&v zAXyUurQ9vE%^@>$a|#7>+;+=emltQlXKrvR^hwNCO88r4^~pUN1uJqgoLM_8YlIIw zu3qvWO#{|AW;eD$a*wa&2Z0Gb`l}-QBRjEIMmQ&Rlb;mbB;Uv@db6U-&332|%$am6 zrMne~{o%B1c%>W;H3vvd8$F*aXozav4Jlh*3cT0yIV0y&YO3Ej`@zD2=b;I0f!$H6 zhBt+pk|YpxXv0b35~84e*%n&wSU&rke1it6b*x~40Qn|REBP_0jer;n@;%(^Us?)s zHa$E&uLzNWO3v`yphN1;3FvF^2nmBBGZQQr?zlqcdw|T>GC@;@7IrmBm>3U(GFrlj z0wA?ktD93*Swm{H##EINWK- z;MM4?4)&;_uZv@RO4r=2EvK{A^PTH_>4wJX8KIUNcY43o*Y%F!x6BXz&M9526*Z*E zpVM=r$Rt+2-9gtwK@hMO=yp}2{&ZX5K0U%?UX3KNvZ+*cET%reghsO}=_#EeUcI+b zw+>rNmbQdVEo(1}?+cv;ryhVFA3_lkNnK`V;i~RhuH6nY*m-FcatBQQNtWl&_~Y!Z zL+KEdXFZm_z&Sr|K0;CvHw74bo1Vv&$c=l_pv#hDNWv2(|ENLq6EYivYM~QQ=`x26eNcruDF+c zhTZ^)9>8I{EVDoMM)oC|pIAce$xk=ELKzSUChV#{nc$o3Gtj}sHXFx5Kv7li7eld_ z_}I4{OGJHhwOU4_WlA+Eat-Lyy2G427FF&(RCvhpmWzPV#oh=cB;C}c=;|rMWR&3^ zvg)c~e>Aw?uBF+nH2&N)=XPn#EqtoS&{zdf#3sX3cjXmigkF8R3YsQ!La;5bHuPd* zVsrp~0-OPvA6i*4b33fRSs1RYtkeY`GE!t6r9^H zmeaMz+l@FsY!)PA;^KZEv73+GRrn@dUt&C9l9vSKFysb>YW>{j**sx#@tgHc))y?Z zGbC?{bfGq8=cUxq_u|oGsvXDb-5%z1Q)Tjef*1sXP5V4pV&)>!ngvHnMFo>}b*zHD zHrV~zqjQU`G0Bdf-m_89G}`I292j<{A2s-sM$E2IqY3e4GtJiV_?BN4-$ns|6G3&}rMZK*?3MO9vh?cs5gj;)kwy!LC4}T{R<~*k)ko~3yZ@)J?nE-hQ zKI4a9VhcDG^%_2S@M6(VzX?un(%zY+W@_wetUU}eHtHzN5RZ)nQDZEX-9L`O3J8!K z;{^_f-Fb;5Zu{HdWnBiqWyZb8xAYK!M^psJ%_UZKI-@i!5qX)1W z5;cRomhO>?mR2~VH_F^EqW};DvO{mV_lwa`u4={^lndcLco1mN5jO(~amx?AR)9m< zOUy>^@VOr59;JK)_aze6)!dnrz;B4^U0G7kQ%rIVahE^^v!~jj=7Clo?<+-(otdp@ zCU;a83WC&H0m9bH-%U~XT&?GiMfW#WLQX9CgRk69@h`a#IJMmOc%(h8aY=qs;_jQQ zpdgmVzw#k;;K=^i`W$!_;)2V_C<{Sj0O#~{sOzcyFP=UevZY=7bDnoZ6B@}o4e7Xc zEAu`W@w*>jqlJfKZyU+K4yyn|y?J}PC4D>b(KE0q=Sv$iix-Pfzz;nx*!rOYFQM3) zM80--u3W}-2gLd`j5PkeU8FMV>^G1#hz)(Cx8%A~L#euW=k-WWm%avmWG00mSFY}g zSFOY%2zC6ZzP9CQYuQP|d z$$2|9LU(5mBQjgSA9M{LkE_Iy9D%sBbjf$-I|zXP3U%tQRUZtgE0rn5$HkGeu;3wm zYwh{26f#o}55LF2AAtR+q4$e$WOB0mI1)}jJKAa;kP`?CBjTJ*w5*NHAuTQ{Vm2FL zUZ1Y3`^^rJ-`lBb=i|e1%OCb@%66L?2h>xLql4;CJoX5Qw)AaCO8#a(D79~^aC?M< zvl-lTmDw1?syY(w2Fm`cEXrf@cf^<7*(0A;&D5~p)$l&}O0p94x!b%@zgbJ;r`2p{E}vz)Z+gnE=v!;5|Gp;u`5Mw~iHrbBQ(35$k_ z^Rb-{qVh&ry;R>Vqm9YCsqXt+Ny(3X!0(*bW_sE4xh&AdP$8pK&XpgNUn>Pj$+q9^ zVpmgnf0vhaMlByhd~9mfNL^S^GZp+IG9#m3?Ph|1kRmHu?} z3_j6){Lz%6l;T(PUFicQA-9A7t}fn2r$05Q0ojQ7)CXS(M02oKSB0~~A^nWCjBXGY z#D(#nGA^}VUWn)|xs$r93mkya^9LRiQd3hSGgmlr$OF|2sXZ9$KQ2iSI{ITj3I_Zz zt-6|+E;f4%I69ys+1c-rkdTym{=WPh z@#Op3uup(Kd3anECHr<|RexQA-{;Ugac(c7rM|BZg@T%)m1rP9XD&j_n(g2Y;&Hks zIx?clO>%pZ?}RpqI*vdnMlcGY*Tn^DbKe?wxbTA^1ik4&82%H(H;(-5t|5@`B;t%; zsOR&Q;Z}EJ8so4)cwK-y9`5T`5AG5CxV*gSblrkJgC*A6q>Zq@G8z@RE& zL^tk}dI)z`#Y}Ci+3Y6_?_hG&{KucyG55}VSfgp^{yuwgv{qT^{c+32GXM|S*`{Yh zXubfS^std?Q+WOIt~b>ch|wz7Y&3-eD`j3vD+`N$dGcZ{KLuz0m@^;>u^6|A!xrOP zR~Zt5o|DFW=T}b;4)osxm^xHZb&&GO6PT}7piCFzThtc|VBFkt-&Z8S5qq2R%ev@x z_#++&mWU)IBx14QFLp?PGs;mZsNKT3{;wO;Wq!$+{M0ABAeTuzH1x7eQ$xy)8p44u zntD$eI!DT=gM!FRgooFND*Q&q-fVjgq%adVHi-!GK>z7E1t&cl%kbptwk!9tk18!E z_#?y7{3vJ!&Nj4gFE`9at@n(G86TC2?;cBnAHt# zQljJ=EX+(4lHB(5{#C1W{qUf2Lk$jW+@s2<$TMcrXV6&+ClFc@O=R-;MV|IWmePj) zf%a$Tr)vc;n@-udE;sk7w~x2*PMer0C;z1!TtF>NzpT zub!3>HmzHmiAxNmc<{( z!o{;fJpHA+y}y2#8K=CJb7fsO-nzZ!MEz6X$C<)S4@ZXYE2>#&_D%Iux4ZnzIJTtq zFXHg;#v7@gAJ7zS^{*fsOm&gfr{fOd;^OKYSLXXha?&#}P_nS}jTk770bm-Y>5Xg% zCX!cbF?w7zH4XRlvrB=6le1>cp}eT-0dkR6V^Y*VA+;H%xYE1LtM%WcD|3s-+(#zR~EhqmqgXkUB8ws^j-0q6uLs(E{Z+b+wA@5#R%iv00Mqm(XTf3Iq9>`B^Thjbm? z7k#X^@O3!UIi*{20vEoSnTD}Pi9kBcwNAUce+}MW?nABza+|=9wENjg_32aJos8{X z59_DL%FG=e9dX)F3Nbx?>@}?I`N&V`_4f@KX=#{JkSQF1?RK_NuEed934`CbtR6!T zl@g1|%Ko$G+)!(c_x_`5o?7g`-}~>!pCTQ30o`YZ2$WOu!!j0mb3r;UVO-=meD4 z+Saye$pheHL#SDO_FMVi!orWN3=<{hm94D^U;^Nks2*zHDq0Oz*a`Bt7e1KG7wyt9 zHg1O;{bVM9l$n#Wz={Yy9v25HAfr~Zn4dK*sA-9$5ZmO=I}78Sdd$cOx(AF#^E|au za$4G;&!0c@Y%Z;>bpS5?fWzz!d%ooVT^N^LFfZ|n%XH`|$b-1rIGJmLSX2sB#DcHl)AS-L=wTBiP4B*ze56 z$!QyqPge6WHYgI-`KkHk6|;UDE`Sg}N=mBD1>nBpn6$eCNIlx%h9OiE$r4`LRVmRR9_fd6^!dCA+{+zbpuFR)uFo|n#AZad99o3M}ndr5&}nL{_CB{QO+ ze;{1pWMz`HUAj&(f((VLf}PF5I4zibDIcDJ`?J}nTIeBaBRXpV0XFood&10IC_lb5 zKhJDEEAq$W!2Ae0B6^%{a01VOq}^RxU-CfStz?pp|L9TI$Pc~eu7~U9N1#aw*Q|2* z;k2U*Z!@60+%Y5KjAlhFIRDL$hPGJbs@exAs|O2x`PGzeV`@08Y}jq^!L|mGihZPY zUyN77(Y5=LTy>Lcs^vSKIu2fe33PR$klW$VDbN$AlriD@tM7^cn?n^wP*PR+$aLDy z^5P9IF;1qW3BvwggY9if!RpDua!*)ma@%FrE&Kcnl<4k(@U`Ws46hEb;U$*SBw;UY zhc|!+Z-Ki817z3~h!<;7q7Vt%ITzqvzHeMZMSbpZ&IP-$;P8ax8!#Q9#Y%q|1B<$Y zSf6nHbmdVL)X;Ee=!y-coa$cBeip_eL(tpdsevZ*l;H2iu&Z)pD~4??EGJYCNrwur z3jKTPrbNrTWmYzZy<5-K`=>fGeisClj>$`wWV}&RyxMTL(85z;wKdMSd+K<$nZ>$( zJa?D0_MVe=!Jr@RtgMLv^DW#vcf6tWB~KY2X1Gp_6@8$$Fpr6($B)e*y`Y05D^_pez+#&H&tTIoj+3GV6Dqr7AwKp~%j^urGpw zqoxgE$B5V`OLfiH^pqD-pJF07hVI*YH0c|E52t@vF~4~4t)-#;_(iIFX*6G7`%_F$ z?BSNfms#8OW7VvYa!c#;jpZrxJ1Kdgnz9+GwqFD6-wlLE6LWv^hoS9PGm2?*Jv-p^ zjTV(tgY;ZK6Hed}t?d>l3@|Nzuv)!CEvLEYG)oEpC^A;l3pDV*>ZgK{K9-ZUd8j4H zSb-!{c%14em*+X94@<#?w>myL`TcNu$LS^QE%KQ^20~iSp=jY8gYHJYxU=CV=FGPY z>f`u7OUuZJf?FUUK!0Ikk{y|YU*7MibhNkk)p+1rQHuT}`_(_R04gYCxI-(oF+fR{>(p)!5DSOP@X00FIZ?ykr{43H=sfDf8 zK4viYgPD`vrum4v?sLMP@$hl$xapg6vug~AoXlzrO3vM*spH&@sx$laE zLX4`JuWrt%)wr+&E2K1K3Ct%5@?Zq4%7Qzm`IzE@I{=~r7yAlf7*r_2%nyl(=)v_v zRB|IDgPZ@#gh+hzoAd-m9 zjh7ZeN3XuwdmehqvF@)Nt_$RT`TY6k5PEcD%HcN!R~3g1J{b?eAFoZaHf=X&7uMdW zf80yZmg?-3cB(d{Z_MgJF469giGR4dh%mMK9Xaj#{1nO_Oe3imj*e;-JTqe>?<4W! zW?@xG--YEWZ*V7vd)5~F=dQbXTzFu1P5frEz5B>BykGv&*MQ;b;SLD9zsf>{8Tbhq zI}eT_Pmo?~xDtIJkLRUZX?Fz>Stc7th0sO~X^6tY*d1t*rzh{rVBGF%V$MhQ|M(~OK0a=v7GdSQ+jEpjGXNsU|{ETUA?ik)0FRzqm1ie6n%(wRdTj>E)Hy6)bSzHhC>csf(2fpcWV>S>?IlTZ z*?)A9KqKxr&FclC8?r_QSF8 z_w%_8c8yA#NvrYx*t5~?y$-Gs^&c*CufYOuw|l0}j?E; z8FePeb`+WfYmeU%3|q#e?(~-yM|~Vf%`mW~4h|`;zEc@YJLii0%MVxTt&lpf+2{1c z-HXotqvY~iJ?BRWv)*B7efeZL&nhNgRaJDnN>j#b&O6{ctM0?80W?p+|sR-SfMbvqydKzUS8YpZo_SikizofdC8ZIh6>MU zpVFcH7Fv{G+W%Wuf3Y=UN5xr?B`J8Ahkf}GEhaAvOb2=<8ppEThuCB}6Se!}he>Gx zmI|F$oJD0tJp>S*-G&CkSrjpn24OdgHZuoGzkZ#o;mr05lR4mDaInpB@@=f)T|amo zE18kYip*dX1^YkJcYdrRNX52rJDJge!~E0fg!|#}ZbJDJe`hIOW|r5zBctKUo3gx% z(@~JA%=KqI4djlr3yS~7*!t&>Z{bmDhTIF&T5ZC{a|3I$(bzUyVQ%Y14K#rQ?zS~1 z^ldnZZ5>RB+`MOJ(+_$2hkI|Fb>VOn!j4E;o%a9RUPH^+_iQFCw)2X%8&~?W@M+w+ zx9+=Yz7N(t_9!o+Q@S`Yz8<^09ks7!vwsd7{n>K6L&=`a%u5S0va9m&>T2DWSZkPG zK|yI6G^=l>3B7XHuNkTB=&|cI+?h)FlL&r(ccGfkt>$y?Xo~0Xq8rPFYNxbJ;6%!= z@{qKL&)?GK5Yz>#>!CZGTL+h=bT^U88pzDEfXfn>>Cip-)L6~?Z5A)2{C794&Rm)A zZQ+4EW7X>8o&~qFQRdya1L!<^s{X{cEoGy1C^q}{=9=E zN8iHj4jsN0m#^`mPQ#i!-RukE+1bCx|FPI7=V8VEEhACm@7SOxJVh({W?7*8^!R!B zf+=>fTi49(qv@(GV%TC<=4RR}OChcbb9o1}zFF?8(#+qLbFjXIdYE&(E?#aVc5mzd zDux3MkTPy{qo(0du@i>9CRHFMCB4s}rnqpCo0n%iU3*c(nfsz6j^VlErbg@$sES^c zb|2A%5<_U9sVzk5;5m#fWqdGp#OOlF3-A)mcKMr^ex^yDqNX zXfCOO&VN=e-*W5!v;cLPvrr#mXi%xMVDKp%NYkk0c*4JMi z(k_AqZ^0z5Z8S#OK`eEK_&Pa8lOSM6YJ{j$H(i@!`#1 z{&}~Oq!>)Ib|(oMA99)Sdp1$2a3}D(m*qN3Ii`*)49M`vUemF#_+4151(*NTlY{-k zVb2=k&T4)#FAkFK@{M>0mVkNNhrZRj4@8^CT!&63XCEN zWfCrQdZ|6h8_`IAz-#-^tCu!{)#g>J38%p`me*DR^)YC5`Oih9-ERAdQWEnx_gT5V zeS2%``jO$@uEbMKXD^6yes4G~8xf8^zX4B1*!_BRsUsH$O=-;q!h5+={)A9Kmyo^i zBXzMfhzP%sTT`E=MnW_5bM5bn&ur$!kra@TUwpW!N!O zfD->heGVb2Uuq`M&h6)qc(y+n5DB2~?iS?azCQyds*4OXgQYHAE@nov@lx^#clxvP z_et0Yz`mJjKK}?&AOFqq7NiTgbiIQ`Y|dpRBJ9dUu*ewvZZplOk>$LSjiRuC8ljTE zc+FryYx-P_6kxK}oLE*{0#VzUetYgxrZxW!9ZSEmk{Ae8b-BVTDrjL9(0>o{Re$;z zVu>y$Eo~te3%2zo;9hRqTQ7uZzC+|Na78#aufe1Pm$}?~SvP(-xMKHW)Xt`6z_7pu zHf;BlfhmH+s$^z=v}nO>e~qY?Ejx!yzh8mF`g5%h`=@=ge3XEcZ+>N!? zH(o$#*kd@gA*K+1xnygK8*j}JZ+Sm1tZ8k1BN%Rrb&8}7Bb)K5R&8q7IQ~c>`+I&q z_1)bBlKn%|w;L;-drB%Z@oAxynY|iPWLL{nxc5FT6HU{d#0dfre0txs)0fuE4e*>s zT%6~ju}3#18!e5lY*S(i>p10?@SL+Q=}mCNCGob~GC!COW%IniPFs}slvD3M^NesH zQMh^2YlTlhP>{=FNNQst+4;5|gOQPuhT}q`VWdS}w8S~h!myE%5qr}$QCX4YQ&l0{ z@qhRkc!I0X6HzI`IeTagk$_)xB1WHg(Og@$Z zm^xOPMt1KgPl_(GE;z@D$#bUd^yOQtXBakmW*d*LS=?n~)nMJXR#_#z%#nX?!Zq!n z*)T)wnX^rbpNegOH^ICn=J^H*#8Dx&iPo&_9qhrVQy+ixKGK^L!m8YTzMCRH=6QFe z7#7P@Zshx<-gJ5wDtoh#>?pxPk{)e&6{z_gUh@p|xm^8l9r2|!K*4Fp!e^PG-a2}E z-yWZ&EiO#AIpzrVM|N~SN9_WwGJunaG0jr^9(%Q@N~e3-p?M$0Su{sfttc z+b?`b`S{e;`9p8>U>Cy@k6G&QkGE;^uO45TGpKJ1c66`4DJOS#X*m&ux2f!8>3hxo zR%fx|0V=y+aRn?jWQ*GKDb)aJ-;FjkeiVteeEBvre1AfXXC>`zO3=~VtBVQg*_!*D z_B(sa4o&m`s)GgY=}OoFUZ5mO_lkp{q6z6NjOF~AEd$A!xMp1P$~ec_BYQ7Ur7@p5 zbH2HA^%65{t@-i?ak+~zk!(mtDKa^Uc*3!roxxo-x3#4OZGmN?o6E9JYrn6}&dsrOR997bS&cXKj*qMMuHUXrQWuno z5R!-#apbd}Ks#-Aaw1xCOVIs`ww{l(8D=^cDDivSK5{%xC&(i9PScY`KHau2yeHL` zP0TLjy_eBZs(Hg${fDR#5Gjbb(^V7Eva*|jwkFq^5)v!HQ2TYt>+cTD3#Bn7%kTd! z>O4)us#eb7`K{i5GA06e#Oqpx8v$dQx!q}mJBGa<`zCr3@PGgK@vcv=ea~AIQCGWb zxAQri3vW74JKLJKMQB~@4oPcM{j(kExARwq&VG>Aloe#73Sp_B-EEg~-@~>2v<+i077l}} zq5YtieZR>Cs5M1O>zie%bYy~a8xXBHb$9-sg5Lq#%!OeAQcu{iw6 zliB20mQ{zib5%Qn|D1nH@@z_@IN0zls+^Et(Gd-Cf#=W(JW223nGr8V=CChDK|)zM zsMa;JjVLJ`Jm><>nME;y-J1VmYlb(}_0cwjfh4HR?*Li**=oE5RPSg*+~I|>&hC9_ zsuUCyW_{oHfO#&T>dY(q`SS~`2oqN9CLMesyrvp4uix0g05M$z;uu?$s5fQ~jyQk7 zz9AWJ#_EcS;<~y+iHbK+0SX8RKs(D_L%ZoXEx_Heh_`S5!wARowi&ya4awE#k;-!Bb7$X0N6%+f zR}m3Ql;LV$)Az^kWNqi}$~6mGXB7G?su~7;);LTs8a6L=JiJBS8HJA`DV6c&5o#ABN)*CVAu3nQ?4=*~@bkD^o+-n$Cjj;f**$_=FO`?hxFT41nsF#2^!O3~Fx zT|&omBJc3C%a0Y}?xCApDwuQdby)qkZ%?Yj1?zJyhIiSi=|~M0+J=|4rt3GyQ9V#f z*3j+zYz6fyEp6?`ea@5gs@W!0pneTHKXapot*ol5gTb)@L$H2Ak|Fa6?zBy3Op7a34A4thF{3+tr6EDh{wYp}7MyuT#)CDt%kO%C;QjY5mUz#f9}g3@7ewjs ztsHatd83;EM4L%f21AMrCS!H##{wwzlvO&MR)1bPMzi8)lPUhIFC9ziqKbR>sCf4MF=DhGQBX_#LtLDPYu6G}VHBq&?nYa&u@rKXwLy}G0!fx9S z^4lDXi;F8^jcIzLcZLjz)3ev6Cd%a8g@2U{vWjQ>TQ>MPTz*I8`Hy={*8TLh zswkPWm*PYKQ>&V+6kxfIrY zPQU2qGrB%skFBQ>p%%6gIh&Y4xHj(~YPEhMD&q-@uH7yyaSgT0GYev+pl3XrKH{piu7aAnuqvGu)U zV=taR-vd!WNV9mO{QV{(!aF^k%fP?@l?0h^foJ~y6qp(d3i^5U9H@-(c_Wti=FR7t z%|lSy);&pT>U=a>j+x*ZuN)3V5V>C*ohm%F%GcK$v{G&QeL`0I#~RiB*8D9JWlFzI z>X+W_aJR9mUhn)t&%BRu(DCI#XVc87>?o%T;iyv(g|eMKCK_QcWG`6LWCmcAUou8P zTv|lSFq75=b{-Wb%Ew2I8<3Kc3SY`ah!YYPM*nwj&sSH>cF(lv_`H*2#`rqgt>xt8 zT*RZ^$w!G3i-5j&i`9S79iJR6-g}%r0Azt$p`9y;Pj)9uUh56Bklva{NAnVj{9D$~ z+^02B;v05-2E1u9TnbBeB9jr{wzwf zsO4Goe%k>RWsEfLr@i1o!=?8SVpT*B6Hb$-`X?ZPlXcDqVa=u+3mLQ_%*xgfh)18rXw!T4HnD?IwsVh?Oz=1 z8k-aG+BGKgbO4VcSx)(`{+e+2>o=ryu_w!I$FHjk7mVBd4l~I-M0^Amm(MSU*Pt>= za=$KmPg7IVkt0V^>=#WO936jSdO5b<46VP`lWjlnBhZN`>FT0K^U_Jp=decis;;gG ztnnnWfF|`)59Lj!1J;V*^f;^yE_)b;tglZ?MNmE-x@_&`;C22fJN+{m_@+FMPxrg> z`9Vm`_BPcplr2LYqh+Sbbi&8;BpZ`Y-J$dKypEEtjJl@YY!MPno8ltp1v2gKb31%k zaVccm|F*Oz0+Z*f=9H1%k0OsYCk5tp7UwCh%Q%Xem7%;o zoq0C(IG|X4IntKN0zoj0O3$?!C1bdl48u8hK3kp%WK}=G#pSD*sA9G}tE=I>ZiU&p ztgNh(!XqfplC>ssiTWiS@T6-X-y|vuZNScZK-I%OCLSMAs88R$xj|MudDg!?WdbEp zm+ihbw{OXP4+|{p=?k{p8etz+IlupasoFta-@Zjg7t5 zn(h7NuI#eik0MCeo*0>Q;}yy5-BF+T&cb*v(-y)ckhk#zlwe;yqqpjJUQ&_L5{Nd8><0g7~6I%__Zbz~)ty|KXt}QW69aG&p zGwLz=J*lq?UF&i8)TUW4s+d1V^vI6O~fIRm8J2_604|Hcjr%A|Ic|! zX#2%!c}JsL%xCB$UcEZFwzh^w3??3)fPcIOh96^*p)mWG7u`OX;OvWu)%}mpuQh6Y z;IZ6=*-1A6EDYVVckid$k1Y_iNAb>|KYu$BFG9CHQ>4ec#TTT;ybHbR)wpxn@1Ml7YoKisig+N9|FjAHt)It^Ecx3sm*c39MC>*!p$d-uey19V#bC0=M0 z<8)Yh2yl~Yw{Ujvv#sbrsjRGI=XkAQg4D6OlTM*aDr9YsJXgb?#RItiS6Z_N-YacB z&dsF(y7J2_*u1gLU~>F<;+57Fy&=URl7YbiZ3CUFL(lemPYHOMYVl5lmD4IXY_2FN zw<-Uwqw=jd#^R)NPD8luJxe3UVrJ`F|EjaupX;3aE*Jjz-taVAG2cC2zm;tf9wObS zmFInfeNK?W79fSCoz_>BK3&l^pC-RjRiOGSNokjYY*@eDkkwtq&9AwlzI*I!&L!sA zbuIRvHYEF-yilWW$4!3M$`_fa+FR5ejod4v6LP#FUrE84;ss*$FZC9c&~Fk2C}j3d zO;ux9&!FKWImob+LPB8}ghnVO{s0Xg5J2F0(DDTwiZWaWTy#%e%#Hb}&ZFp`(b04x zx}FlUHjhyuJ=v%}6_oE9Kg`xY)_8=aeKzX9#0QBpv!?n>U3G1TT>8G(yIItW zYwzRz&N(@3^UL6dgolVsd&FeLvDlAqJv3w4w3SCJ9xaZFsl0b9ZaOf%F=st_C{^FK4pF#G>eP)uTU}4;NDl zJJLB7+udH~IF#9*7^z1u>rz}MqIWj%ZlmP zv10~J2{eF&398xNR2q*SuPltuO{CWZv`=AL^&WaEgMx!O0HiS`DtFc&Enr)1Y-}*2 ziw>R(b+`Yob?D={J&eW~KMuaySu?rHJk@&iYLOH^yF}@!^E6<>H(}YE@gmRF_3G z7w#)5Z+g+BUhp$tu4zVG=~L7ldmBIFkTioXfizZid#&bC-U}|)1^Lg_(-$8fySZCi zXyqX%Hn*lkd=&YZKnkRcJ>O9hzKr?5OO6uLB?R4@T)6V$n4tBm$jF*MlkKV5*|Crv z!M*EfYhTjSW86o1t|z@lMCW(k4>X9r_VwL{{*x=Q_3~SBc)x86Qx_L6Z5$b(Ao=z7`C&E(p)J0fUM3H^ z^R~tIA5L9qzV5Kg`lMYWLr_rgU0tIe5s@}MWA9E4w%qaF++bRu_4C?J`)A04kH>`M zV)~z{jvVXoe&@Ba=O1;JNXM`CMC%9f8}8Juah6)`I`(L2;hoK~syG|VMRLhZm9`y^ zbWCnLt!IwY@T&>flkd_m-L*Wk=eXzf?jukHAwP0N3}G#iM%cj6@I_!C6Cf1dYcInT5gLW2GO;br%l=ZJKJX? z@Mkf`ar(ewzV{W?zSeA!ofa(nu)pk~0?)USu7HV(J7L1+JF!ALd3Z%=rc`#fw%SUq zFV=S=@S>}Oh%J14IpVUd*%=wpFqoyKrB@*#6b@-0%o)Dl1>Nw&p?W zWDI@^rw5;PMbo)3dA+)u}M5Vg+WF{0`~JTmcU zh%5={P{~tZR3Y}U(G`)7mE6=D9LzbdeSo&xO+*VspDU^h$uUoLa<7_XoK}%CRnbq& zNeRk`zSSX^kN8`mN5t4o6IgQ78%dqgH9C@x2h+&8#_fh z;*^pjdW}G^Aql$Tw!ar}4(fit5>&`wna?Auau*elEGY{$C z-as)~qYBCu$nvz%8iw{%A9Sf|>*`)LFo@IM#H^Z!Y^k4|D>pyF+-4U*NH!z9Qnd@(|#g=umYdW2i<$ zWd#w0k<#FN!41)fUx(fjqHf7_(WZ>H_VKc^G9dY*-m155iOI+uSZS0c?i};{rH~l% zG!OsZ{mN7Qyk&A+EL>4dtr99eG5aib0Nf+IWlK*dNsr5Rfioc`?ir?ekC>`!YpZ*E zX&bsziMq%Vf?P^=_O&u{OKl9EGobW-SJ9cfKx zVsKtd?Jb0ylYrG2AvQwJl0ah;(RGZD4r@1$1Btk}xCn4Ofn1O;I+erG#5jWsL=o?B z2)B`&ukT^VNyNN;>w-_9WYegGgF+It%VMbV_{o#5T>8}y@ixKNmmz^7syl@A5S;yg zJUo<`J>=x#DyyzeYM3|0@#~X^{Z~c^hoWh<`FYVWp5|B*Sf{i8lAQI)w0ZkMJUM4c zhw^ZnpU%8yXm}Pgzq$SEFpM9irNfVtpV{DL;&>b0$_a#L%(tB*X2*fc@2;;b%(K|n zz5c&mfU(Axc+vg+{W>kIf`Xx#RRD$FEdCJ*UG(A%bjg@#t($tV{(@CUMKmXwsZ;Yo18=J&=v96uUCCur>nPQnai z3ZN80zZMo2`eghG5eHyu}w@)-a+>wc-`WXlAWrms>G#1k_vJvTinSQ^w9C!kgOTm(V^zeAX=?zTJQtL z0~ewT8j%>4fhAuLBTvU1DGr0ek1AM;@rE6dA-aKr@X_bYFLoo-() zJ8KBQNP@&XdxtMf>`PNq0QhCmS1toMJz`g{nr*DvVtSkenw8ugrYIR9cm#3kmODnq zpZy>k=?!_awzd#>fl&Ceo48W*_UM=xa+IT%=Z5+1=9x)u1f0``559Ous}a*zXp)(~ zZj>B1W_~eFjv3O8Uy6%epFG*Ru|Dm5Gg$-c4-K|z-FE_WEd%sMx*8K5{qT3+Ra$Pt z@91bmb)A%oO(Pm&Bh0GJX*oGT5H~2{or*hOEKAbt3 zKy<`^{EV9)3x6Sc<|N~IkY`4kK?humcv7@=FsJU`msD&+xZOdMBJ;t$5Gm3I6P5kU z5_#lAYx*u^SZ@1ip2WwG8QBSy|a6k168O6A(1W%YNgY zIy&;pn_q>8R}pRw0L7pqhXXdT|0qvFUFld$>PbXv90|xOp6!?px9QTx^zfjGQG3>T z&}Sfe>o61!4GN{fHuOGX@c5L72tCpkj1~V((JsCZ^`_j(>PXQVcoR7EcbF6({1DK5 z&x-r)1#a#gc!`u`WMo&eja^V3fx7@{@E*lLw{~A&-&Qyp=>NoCa@|Ri?IkwVk;_F) zB?kv%OwkL?ZzpqTVLr}O6kguQ($TT>1~iuWHop0a3?kff2Vb_C%S%=HkCD+0H(&cD z^EgqYY#H>}b-#Lv4RZz_Ab!p;-JV~Yt4TNQ7V)Oze}b4tqUrE^2NdTq*}B0lrO$fq z+yKTIwCX=dyEz&^c%Tet3+=ycZ_%&{O`s z_6&n!ybb-`SEqHCX9p`oxL*QEpf$KOh(jlc&+LR3E%#O}I6Y!q5C}(2P3_U3zY;Oz z4QH7+^9XSQo{TJ0r3&OJLE%9fMt7_s4yt!FS)m*{J8^uNvy+i_r0Z3^ci!9}aadny z#_@#u!rfvXLgNWzP)QA$ji**JnHmkbXPQHg`%B)|7Z;>Da%5(a*?mhY+6Vonx`_*gep9z9`L?-H_tE=m8=vF~C?_Yh5v_j)j z>k;Td>L#QioOwvbS-sR;1{*Ovd`)lVcEI}LHKJbl3T+0U@weYAm#~^2Z}!0j{+a6B zcTrK15=ViNo&DEA$uUcT4^qK|q#-r02_52 zv+6Umvv)D~5+>pp!rSfO3!O#}s2fr@-Nn5mLP_*SU|o^3GqhoOcz8UiISBkyxYV}~ z5gy`rB>zF64KS4BVb8?_^g`Fo%{fuE{8Co-94viiozGXW*kDBU@ZwPf@`Ox9Es{U5 zh+b&W|Mm6~TD<4b0Z+TN7?11LBM8azL19W3GMQl1_a77R1K_}XsO?x>ETO3ua>EAOG%HZ`0Jon}*c%CcIXhmA=VI)U@~@wI-e$_ZcHq$fNQ3XN9Wqc#*9XH#YjiJ8_`z$!V!~7uH3f zZGRum3hLC)kb%5wG$aanW{?4WC-(~jMGyfakP$lvhc?h05f2fL>vPO>@E)%rqrpG7 zKWBvu4Y78uxL|`cW<@>$^fOh@$!0{FKkV51KKhuShWQ(`BzOA0<|;eq*4+%EckgUQ{LP zfds6kHN)UAbj^sflws8DjS03bx>2W#P?5oq9gJl^gGfh8GUWO2LtELmKgNKNTU-;O zQGxNgwu)Q`XH&_6lZH&#D*S7lo6?bhhWqO)aq_X9lifUubuEwe z%$cvi47f@Q=oL;#Y4Q9FAt z$L#6I54dL-l$UtyPOZS}mBGZf6WsH_{g6XKZM1ma1hMKp&qx2Sr?7R0Q|h?qzo9GA zs)s_KZHac8ok=o_d@mj~pc(H?utw7WBW3}Mo70j8)STZ=S>Ly7@1`^({l+z4;IaHqoH{t#r!UaTZCf;;CYG? z7bVndU;EqLxpOB$Idv;cucM>mXLU7?lzSrNTX!RG4;FD0Kt9K86B!O5^ZKei*o z7*qn?v11jDh4@aw@R8u9WMpj5Nu=?{IfObXLU(Pd&b8v*je?B~z+JwwB4tEYhS!Od z2}5?zzPj!T+$S{tBy<~;uBeOs($RQ|FEp}>qH{TLOyF0{4JyFw3OreqLkG})`W*oU zfxsMQ58(9_C1xI-t$6-a<=Tqj_Q*tJLGVlRrMirNnaxys!^0I#UIQh$3O?Ly&EDiX|{;aBs zxs$FZG*`*xwu;Q`aT@n;2x1T+_^eO~LUapG1~d`10L{Q;xU;H%_6x21G>j7Y<#+#a zq&_hI1)VuWF{2<65%k+yPj^)zY!D-jD7DdvI)y=X0p|6MsG&T3NZ^cb-!3O<7HRa_ zPW?ceMMJ|aMwzhd@OT7(Lv{jZhrH-#W#zpuE?dAGuV$?rK71G=5V!(Y3Km6bS`t!v zp&+)RwKphumUtg~iDQYm3^8$W^FI@J5MFeZxek>Jyj41dbO~Punx2~D?siBvewqv6aDC?D{O+x&K)BAl4pCI+T5nw}lz?tIBs_!E3lFf>fS zt@3t2GuR6K@2Q!Yy2zT`YP~6*zkJ!>Y14iB%$YqTcu3In909Hb;}8qi>*oLmD!nSc$bYoomZB9W~S`XNL>7#wCU zP5Z{`lKgM zKK}RON|*FkBb5X4$J!+;>dqajJ=f`dXVPTwV1`w>j7g?7`Li_hit=)SORnnY&Zlxp zZ_lo*`!cbfUEsqG@cQ)Ez8n!wT*oNQ$vJ+R(S`J6;CCLGRwT&%(lAx&p$NLGb3#f7$xc zvb*@(Hz>F~oMdTKqjr-w2<8p5b=@q9M)HafI9KDm;R^@N1?6(szKvw*R4WupQlJO5 zvFN->g`kKG>N2)Y@f3phgl zy5#!T=<8hR&YMo?<&y;K27`YKl2^^TRX1s{Sz#3)K@`-1IHKSQ;Y<%wP+ZM6>FiJs zY3FCMRoc%S_5OWI>jSSp?(sM}iV4bJp_Tg;Q~P2L4npw5A8YA9p)sjt(wg3JUS0*A zXFyeFSXc+2tpEV3xr%U!WQ8V0QQzvR<@$>w2PRXkBrn*FW8S;clGq#FYZmZ z$FE2t8v^QQeO{to#l9aw#>3Myq2|z4F)>3g0X&H4ul)5Qev0v#wddzHkYm-fH7YA8 zTn5&QIo%CJdJfqOGAd3uz>V3!qK5ktIe3Pw)_LI|&Rn=yYpktrM3_9!#$D;W(^3!< zqrFhf4i(OCCfVDZC$6+A2iitfqh9uCINXLkSPFVYwV4xn2??GEz`v*RrVkxGT7kD| z(3%z#8c#v~x-B3mXr!$U1%WN`jdpE1;r2HenV5LvHuvFLmw!LB*@8I+{l2ivA?Q!5 z(zBSn#*a)EI9~m+?#&tK8l-`6BcOfrytRArSDgP*Lla5-HQJfSO9BKmFg)xF3J;U>ps}px;t!I)4nb$#ajc$CZ>?lW z&Npw`teDE5lR*o##P#c76!RlKL8UzIDD3hn*eRk(3qg%NvokzcD2?_=fl74Pv^EU@A1UxK_SG=$H%Y0r!& z7ahVBKQ_?E#}k%CU(624v#;#?&ruTKr_o6R>SsKmiSiqp5E?e;+~IrT+qY-?f_Y8p z3+xveA*5c+4sgxDeD-YL`L6M6^Y=HKXyG8*YaACl zOG$Y0ZN3hZay#UzpP&B zzzZhirm$eccCLyycOtE#dX!soPKSCYCWWIve0YP&iwje%=gFttBXIe;yjA*zA-nps#FoOa$6B+7L-s`>dsV1Q-h}A{8B2ECsE;%tpKzo&Z%a3 z5~V&gupxHJjrKG8KF6te1G9)&Py?w#aCL95zN7?ehBaC7IXTp(rqhNDY|_nT75VRk zqBB|_=!e<09YpLOst&I}N0TjfHP8s#T_Bzk_FWKR0TG%&PKa`)s4^;Nn;b(eq8EPw z{-z$SJZQ%huZa-uT*tczIhNNcgGfU{n3DDEOAn6*p2XjW42IgWP021oS%`hVE3OC1 z?jw?+$%5`4bi#J?e#6OVdqA2?j!1wj2KP-(Cc4HBPjfq_pIC0uXcz-xj>sR-LzXKt z^pNk-WM(s=yE*gw_dEPmhh@Dq)FtXcR^diebteH6`drCGhz)jv5vVpO*>&NTbJ6qwCZIPiHbP)L_pOj$J~ZorC@dU1Dk}DcR+R`Z zc0`>S@{-cg99jpwn*nkHDrNw9H$z9Sr@OoR_*@E5l{>wi2X2BB8k|YFL$o+Mgb;?T z@WK&X)Lq=A<#gA2*dH%Mwh(-w*}C(;VhOPZd6di06bt8qQp)UV7^N+7lvh zCn`&-uU78ygr=$_q741&Ux+5HBCIN}@#<&AWW3{e)0SMW*tXCOz^E4k_2d?Tudgop;ed zAru*Ys?os~JAEN>NRYKKx`)#Ri)pCGv*yoS)_BzW>}G%iG&94{r4&XCoaj|jqm;4? zng1>KLCD4E6ciM21WVx&-?Ci?r>LN!QjTr+&gwkHP8AyQK&-butWhsWw;Gx z5&*nm5L-5+-Fprk7($LYNOX@+ud+?)@`MuH3O2Egy_b@dJi*PK`IU9f8|@VzKYE~U zlMZo6!aXAcU}j|h2NYg@Ai_FBV=gStl1McJ9;uxGE zTq6997GgnA6%o7%?t@zBQHsEmt76rUwW*Q%zmx0STIO!3Q9FQ1KtO+1M+mto##D9WmoS zUS28}Sn1pH6##ltq8t#YX1<5m(SXBi30Af)6K{oZ?ds0-JP)Xeay;y@_-^V9=y4oI zpC5P4&etYY=OXZuT|^IKyv>yud2?%dmBc2=VuCXxVCdb{oXh2IZxL~@KPLdrQHy#f z5w}tG#N!~U0Ptxz&bxqCPO`HfgrYJSr&g?lLY530{!YQCr?1b2(RvX3V$)p(Wfc`V zxH=U3>wxW%C3LJAUKOLI0ygpX-udNj>Z>wp+Q9dF>|1#XBxDWkg8`WX0nVzrU zAlN~{Bi!6Tz(dqvC*>(d#QOPYw$B z1REO}YVA1tgaZx|usTaL7T_Erg?xpkI3iyIA&z5*JU0!x(}k;3f+j`l)%ftz( zZxC3VC^6ncmp)+Tkf#-Xw`VZM^o*DoCnqPtmc0Foj;2Ti%1KD*PfCbgx+O4w^XYZ2 zW>hI*5Ahw_%o{$+L%q!v1!;dkM}!B>oF|`&R2qq)I+Fb+BUDsU(TM?%3dR|@{~1_M zlIE`0)zxLb;NTImdsNIL0t2t%&NMVM2+KgdL~&UNNNuWU(`jSadBeSeHE%!CZLm9< zaa`#F!vd;~b(Z1A!8TWD1HcmOdnoAwe0>A8!2^CaTNlx?fWVTD`!@MJ%1AWNW4lgH z-wPH;d-GkCqc{|H(upRp`$7>UA1ZFB}G(g|H;(Ru{?d&}m z^mQqzdw9UH4OUqe$P;_U$L&j2q7CA!Q|R(Kr=~dLPxJ8wVbzVr+LBpQl6nR5U|GC) zVl4REJ~qo^%^#$X5|JD=^gHNcAQPTH=p+1xnz!rGNf?evjP|Y8)>a1`YzJuH?LB=p zx>Zt2%JSJ8L>&B|nAoSXfror_Q>>T8I^z3Wg2w0w4;KMi50APUf`DJ~#-%{bbvw+F zqVGop?YWRpe2u_G=Yoew+zD|`lJcgAs$$<*-&SR?M~FX-v}vi@#XAX+dbnipT|MBK zN-@NYZnAVxdW51JJfO$Rm+_ev>KKM6knxuG7+1zbY!2;>T{!A+h)-T~gO!(pzf!+yG8X?ZynO_D!M zuJE#*s0+jL#k{V!bpyswEDw=qKXYQ3AjR*2NlZFUTg`SF=os*9w(bTSg0mu1vj&RS zAV!A)tCEZak{QtQfmh~#{DykujgVMm{fL$mEAJW}@bG@r?TWn#7P_mzzO1V1G*&z^ zFhoi+WVcTeh2rB^+=%y$Zi8t=`Kd?!tDslMDP(|z2U_ZYByUNz9t#X0$*iNR+8T@HNF#;Nm2(26hm?l=S z!SNw6;egiyk3^()zyLkof>U1%Gl@|J^yPHSoD~xri~Jj|u(}C()?bQ8%<#1~wZGfo z#s1Ov2_pbLLy&&cM>|7@^X7WeS6;XVU7#h)v4-b>AVjon4mi-*>U~KpIyIhJ(r`8l z3Gp)VN=_(T14n}mjCBv`UjFE7dzp5;9ho(ujDUq)L%@bypv_M(Gylx&o`48e>NpZ5aF09mkyjLh_vt3UQQ-2ioj*sYDkicaX!D-fG#Z8!?Z@tx2^ z#Lh#sRP~iIIN$5aw?!uEhTgY2fNo^B9}mE_D8SWH^P8U{0VvtAk1{70T-oaq*{=k8 zI<^m@hG);dKtY}G{DA0SKM)h%1OyQ4h2UdASafv8d>h!75dq9`KJao-VmkqM0q6f5zNa?N#uP?VcMn`1!GVxG;5iE45ERM+-An^oKsPb5 z@1(T#DPbrs6ODraF~Nv5=vS8({10c^uO!BQZr zbMwG{(WbXg!X0hX%2YuVdT4Q#`1;7dUoTFysDVLN8hf9id@kt~9)qE{Z#JAj$CZDd z-$?zL88Apdx{DI@BLiOYi4$IGI&=XiPxP6DQlv7NSs)!y$VUZ z@se^l67Ltj+1vv_8{Zv|fPnM3aB1xQ5%RbYMpGo?7wG=|9-o!`3lBfg+(dt1zAxpm+-FP!`LV;sYr z(>PuGi%B+=hm2E|=Zo_^E*Sp3+`5#%pHBYP;lJ-Njz)ZkG@dp(dAHG;gXyi4`}_B= zC94~*8f2<)gjSg($%zeAUa*A?N1MqJe&fXLx)eHc1J8ed_WR$T=?_l4x0K1)f!n!W z997m%JgAq%QznngTA6rXiAi{N&z)4~a73C9Eh7JKc03sO^8t?zPbge~J|z5;oS77O zFA&cw+6*)jK45r2O5HCr)shq2tcuxbD-|jc2{6c}{_ft@p_C?*kJo8Ab!@uM_}ocU ze83Yb;As>LcZo%F)NYpv^AZ;)-l9iX;ODXT34HR+;l1~M$ed#)J6`HFCfm?c9aQ|} zh@_-{*w^UPRrZnyp+lM)Ua5k~ipBP|uZ|MlL+0=AH{i?valik2>{%8nZ`4x{mm6lj z!G^fdLB$)G*Il0dwYmLGs*Sq*H23v>{fX-0jo)Oa3f8#au9F#E`LTZLsHA=-uBO5B z-&3)w*6pHL)DmiDE%yyH_z)Z0e7iOFV~bbjT;8>@$?DtFs1R|ic4Qr1(>c;FzK}dOE-`m-v86QHDZkcO z{fk%dKkGRE*E*s#`0|)h5?9}LFKl)4PGVE~PA`gW)hoN1CandLnkw(KVbuMaXk~rO zz{#`I_IpR}ZXFwXbcxZr-IQ*VC0xbmZ!C8klCq&Xj+Z2@i9t?8K!T+KAO&2VR2d8Z z=U9vX8f%zpk1~ zp(9HV#GjmA)BE8RKoCgzw+^CZ_|m_}pFEEAf48z@=gvbY*aMCrH^-RY8-M@7y~N#t zh-E?(F<{Qkh;fGw8afE)HkT<>$OJ?FEl4tYhzT^}YEmF9ii%xz>0iU(<YYA6 z$e7sQUQLWp{k|O!9t`5{$=8o)-L%=^+nb%xcV$r?%q#iNWI`Rv}8G z$vL(4L6YzpCaIu{mX;SlsrW}6h8qz;qsOS9Pb6EjNRW17&A5=R?g7fy=9_A2Do1rC z4)=$hJMWLhRagx!jbRqbm(Pe5K7?bIe)ZSL4CL?~0B_*XeX;rzspT^tAV#=DjQ4Eu zbN8)|E6F@2L+fVN_3qS{cllfOgcfK*angNw5C$Rn z9qKN4eb;Y?siV5m*eE<2Rz4Y4DGYTBLYo3n5d(+lB6us5@_?DndscJb-j|)KFj-7I z_;i}=0yA@IRf6z^W}woD2r&IX-4DGf7%(E@1Bd`3=AF(%0&sifwwR1A^-dyQ@gDo< z7;OJJ8?TZwdwIo)51u|gHk13%q9$Q!nK53o@NPtGPu}8C+Qy6QWl+7y)*BFjV%7xj1zn2s-mNI(1IOSs#@zfoGO<5OSZE4}pG^6qU( zWgXR}ReD?i@bI(~)`GAN|0mb=cPT=V{><>F^YKk4{V~sI9#pouW@qmTuQFa*n%qpX zlqz!;IIX&}+9W}0b=+cIMnw6~N!JxCfoY4|!}N_=Z3#u6dGsdrZkO{5(3!_~7>Irl?sfDcWt>ZY6@Zx9E5 z*?_M5ID*!7U;nVMi7`vdjS%0PwlpTz)>-3=Og2{|ye!xxhv%o-Uj1oQjBwhxk>oj5 zU13quJKq1Jjv{n<+;w`c{JoS0J$tp)12eNTBpXg5nbzxViYh84!|~4AO4ZsB8dux4>PF5T&E>disik#~nyhBU&qL$gTL1LPu|ayUq!TxI zX2%3EZa!y&-(xbouD|i8yLNs;v2aabv4=xZ|H1Hw*N*%ew<wmWR6?BCEojJq2Rzn;PKl*pVNRobLo6Bd7Wc$WCyl{0Z%z`Tgf!OH8Ni za*L*E(Y#-&H^r@~ph~r(eeIq;E$M8LE{cVoMP?+cWORd*4b#en=KJRKePT?f51e~s zf9#q!WvxgK#SO|%nbKch>YFkQCwZnkGW!Py%Th*6?ish%^jjz%Y&!mGJZa3a$%1sO z`T2m7iPie@v*u>=KG7S$YOYF8)lL;GuT8#NTsF};Ku^zTlEa884mQQa&XQSwRa?Un zE6>~{wr;1$s`bshr#E&!<68ZZymZ#_D2b2AI?Xg&m_q-`VNDI`x(dyDTuZUL`p>b- z$qsTO{e?G0b?+QWNCd6dtBZIi`n;6|&+Ie#(Omj6vwN*Xr{+Vdl`1P0+1}yDMWi|- zSE*8#10C-rbxRl+pbL(E*kL*(#5eC$qM}ivN&J8CFJ7U44ed4U!vjijQ)xZ0_obCb zy@R*u6%&;+{e@R&M<19JzYk=rYwg(SvaN{WC+qBk78|JVGN@m!ju2v8 zAKdiV9A{6;8~b)MDUW5C-KHd_F5Z53vM6uFuU8~I56ZPG{dik4Y}uOC8}r(R&1ZlA zu_T@3r{d1NCTiSTVRO{te((5?qC+KSx|X&<#A)MaOT4>slA-oPCIdbF;IQ3DnQp?J zY}Yd!S6XoRA{}#|xw`MY-#p|aQV z&P~!Xue5sYP`E-RB2n@8LzBEjO=F#|MMg|67dcCxSb4+hpR`9#W#~(Ny53@Z+$TOW zRdphIDo_-Jvk?E?rleWxd-z8TOhi4?TU7DkR)$E?H=kSr3b9X4wE6R8374L%^SSzl z7j`^jQeLex-Cr=Wwa{VHM6bh{o5Xo}^=?w=5-o${pTjXR&QDEnVG?E%G@_fIBg+;~ zSyXgRALN=eMp1y;*2>hyFtQ>pp|W=`)jNl{g(1y9N{f_@BlJ5m&K5D;WFobC_C}6= zUU(*38`G<^%VU~l!jJa5aF1KFJ1Dd1iLi&YGii7t2h{)b&ahe2^8M4;$jw8tvSa~{ z8(bVVg;mndPOkczOD|-OsVap~ns5dOtu8UI{F(X^tGQO$9@kCIrANYW{&Rr>^JqS! z+^CbuGWTNs)~=GXNRiM%s>E!N-ipp{C1wJc$Nme$3fqd`=UL>&u*iyTo|Y9}j4{fo z8s(#VIN!2I>EhtHYN1w4qw`kD*uFkY)Gt#OQFhHwwbHv#7HUZ4SutxCI`i&}^!eId z6S_*j@#=MUehCiHM1}A-CWAX2T-+hehe{7q(*BHaTwWWUrO(gq;lcIx2yC`i-1sX@=`S#p1c!n_4s5ss1&`Di^Jt_wa80l4 z>l93g|I(@~sqN>A*zi=M)J^+Y7|~m7*W0UoLSI&daNo9TS|#0lB+O*nQ4wpmp^sKt zJSa};qgB0jyJPXEyA-`>5G<^Xf71dm>;A3R>XTRZ)&l1tXtR5Mk%CNg|Lb2JG+$bI7>*-?DH+^ zZM9_?ZHhToAFE!S&XzDxy*er7P4g{0oAmVmYwygznmVF5jvSGL1xiE|5GY2JHgHfD z(GVonMh#H`QHy0Y1`L}41&lygWEF*@pk&ZtIGBB)9{fL<#rd^O|UGVd^g-ju+x*Viz(X5c#xfn~2R~DI-4PeIg4&(EnE$ic+hEU)vjzHYlTq6P&RzlM`@@K9_(EdEd59Qb)jITAFT0U-0eR9B)<<%EZz1pIYBqUl&uA5>(&$bh*bHW}q{|jFpjLvCQzYz<;Sp#(M~n z?Y*`nhJ^_zJ5A;O^iSA>&#b;YzRPH@_AYcrZM|os60;|GNJ1$C?e%=uL(9yRj1J#i}zI#g>n!r(7PQoG+z#KAKq z#ZOK)23l)sX%!2I(6ZF>n}I>yvHO`@oR8#;(-mvEI_$s18Ixnd(aVsBbXkpIzPt0u zq>v_S@_kN*RJT~x_ow&}sr0N(hmNuw!gfqPyfbqcMpv}4G|xO9JP|rAA5<+}gn`6l~_8!*;i`kfn}2BBM&qO4L^GvDOX!?kQH=K_NwX!U3Ka zWe}85L;{j=+;klRK6Wis^4in4v@9-qSBvE8Fn7EB!7K#a7c%0iZ2F38`13eG zW$^W2E>90ejpA59w4BVl473^LR|47*z=}fm6jyJ&WJPwfE3XdY7nslFmo}b=!vo3Iw&$RM;W;A6*+K-b3rDACRrzD0Xb@B>vas?8@LORV5cr6RrXg?a?! z_{vk&I@O{wb>u&hj*(*zWE`mU2v%tyVrSXqJS`Wd@Pp9bM{;}0Z_UeDne5KRmpHkd f{%`c348fBsp&>qb0Y3v##CrJ literal 0 HcmV?d00001 diff --git a/examples/Evaluating_RAG_with_RAGAs/Evaluating_RAG_with_RAGAs.ipynb b/examples/Evaluating_RAG_with_RAGAs/Evaluating_RAG_with_RAGAs.ipynb new file mode 100644 index 00000000..f69e55d3 --- /dev/null +++ b/examples/Evaluating_RAG_with_RAGAs/Evaluating_RAG_with_RAGAs.ipynb @@ -0,0 +1,1158 @@ +{ + "nbformat": 4, + "nbformat_minor": 0, + "metadata": { + "colab": { + "provenance": [] + }, + "kernelspec": { + "name": "python3", + "display_name": "Python 3" + }, + "language_info": { + "name": "python" + }, + "widgets": { + "application/vnd.jupyter.widget-state+json": { + "91f4187ef74b4c0791fa9058899f7454": { + "model_module": "@jupyter-widgets/controls", + "model_name": "HBoxModel", + "model_module_version": "1.5.0", + "state": { + "_dom_classes": [], + "_model_module": "@jupyter-widgets/controls", + "_model_module_version": "1.5.0", + "_model_name": "HBoxModel", + "_view_count": null, + "_view_module": "@jupyter-widgets/controls", + "_view_module_version": "1.5.0", + "_view_name": "HBoxView", + "box_style": "", + "children": [ + "IPY_MODEL_d9fb5f1092e24ba59cb768842ff8f828", + "IPY_MODEL_6441a4ce0f644c51aa6c140de43ed31d", + "IPY_MODEL_a6b459a38e5c4386b85ee7ebc0e302a4" + ], + "layout": "IPY_MODEL_cf96076499974020b541a541648028f4" + } + }, + "d9fb5f1092e24ba59cb768842ff8f828": { + "model_module": "@jupyter-widgets/controls", + "model_name": "HTMLModel", + "model_module_version": "1.5.0", + "state": { + "_dom_classes": [], + "_model_module": "@jupyter-widgets/controls", + "_model_module_version": "1.5.0", + "_model_name": "HTMLModel", + "_view_count": null, + "_view_module": "@jupyter-widgets/controls", + "_view_module_version": "1.5.0", + "_view_name": "HTMLView", + "description": "", + "description_tooltip": null, + "layout": "IPY_MODEL_82cd48cdf6f144e19cb3ef0a0553b689", + "placeholder": "​", + "style": "IPY_MODEL_8e537aa094004828b08a55a94cbd7dff", + "value": "Evaluating: 100%" + } + }, + "6441a4ce0f644c51aa6c140de43ed31d": { + "model_module": "@jupyter-widgets/controls", + "model_name": "FloatProgressModel", + "model_module_version": "1.5.0", + "state": { + "_dom_classes": [], + "_model_module": "@jupyter-widgets/controls", + "_model_module_version": "1.5.0", + "_model_name": "FloatProgressModel", + "_view_count": null, + "_view_module": "@jupyter-widgets/controls", + "_view_module_version": "1.5.0", + "_view_name": "ProgressView", + "bar_style": "success", + "description": "", + "description_tooltip": null, + "layout": "IPY_MODEL_55a45baafaad4a4ca2cad720da0a80aa", + "max": 27, + "min": 0, + "orientation": "horizontal", + "style": "IPY_MODEL_7f2a940f7f114e439f63e5e900748511", + "value": 27 + } + }, + "a6b459a38e5c4386b85ee7ebc0e302a4": { + "model_module": "@jupyter-widgets/controls", + "model_name": "HTMLModel", + "model_module_version": "1.5.0", + "state": { + "_dom_classes": [], + "_model_module": "@jupyter-widgets/controls", + "_model_module_version": "1.5.0", + "_model_name": "HTMLModel", + "_view_count": null, + "_view_module": "@jupyter-widgets/controls", + "_view_module_version": "1.5.0", + "_view_name": "HTMLView", + "description": "", + "description_tooltip": null, + "layout": "IPY_MODEL_50282721d29447c89bc05559a99183dd", + "placeholder": "​", + "style": "IPY_MODEL_23c5a724d0fa40efac45f1fe8fc0b9c5", + "value": " 27/27 [00:23<00:00,  4.90s/it]" + } + }, + "cf96076499974020b541a541648028f4": { + "model_module": "@jupyter-widgets/base", + "model_name": "LayoutModel", + "model_module_version": "1.2.0", + "state": { + "_model_module": "@jupyter-widgets/base", + "_model_module_version": "1.2.0", + "_model_name": "LayoutModel", + "_view_count": null, + "_view_module": "@jupyter-widgets/base", + "_view_module_version": "1.2.0", + "_view_name": "LayoutView", + "align_content": null, + "align_items": null, + "align_self": null, + "border": null, + "bottom": null, + "display": null, + "flex": null, + "flex_flow": null, + "grid_area": null, + "grid_auto_columns": null, + "grid_auto_flow": null, + "grid_auto_rows": null, + "grid_column": null, + "grid_gap": null, + "grid_row": null, + "grid_template_areas": null, + "grid_template_columns": null, + "grid_template_rows": null, + "height": null, + "justify_content": null, + "justify_items": null, + "left": null, + "margin": null, + "max_height": null, + "max_width": null, + "min_height": null, + "min_width": null, + "object_fit": null, + "object_position": null, + "order": null, + "overflow": null, + "overflow_x": null, + "overflow_y": null, + "padding": null, + "right": null, + "top": null, + "visibility": null, + "width": null + } + }, + "82cd48cdf6f144e19cb3ef0a0553b689": { + "model_module": "@jupyter-widgets/base", + "model_name": "LayoutModel", + "model_module_version": "1.2.0", + "state": { + "_model_module": "@jupyter-widgets/base", + "_model_module_version": "1.2.0", + "_model_name": "LayoutModel", + "_view_count": null, + "_view_module": "@jupyter-widgets/base", + "_view_module_version": "1.2.0", + "_view_name": "LayoutView", + "align_content": null, + "align_items": null, + "align_self": null, + "border": null, + "bottom": null, + "display": null, + "flex": null, + "flex_flow": null, + "grid_area": null, + "grid_auto_columns": null, + "grid_auto_flow": null, + "grid_auto_rows": null, + "grid_column": null, + "grid_gap": null, + "grid_row": null, + "grid_template_areas": null, + "grid_template_columns": null, + "grid_template_rows": null, + "height": null, + "justify_content": null, + "justify_items": null, + "left": null, + "margin": null, + "max_height": null, + "max_width": null, + "min_height": null, + "min_width": null, + "object_fit": null, + "object_position": null, + "order": null, + "overflow": null, + "overflow_x": null, + "overflow_y": null, + "padding": null, + "right": null, + "top": null, + "visibility": null, + "width": null + } + }, + "8e537aa094004828b08a55a94cbd7dff": { + "model_module": "@jupyter-widgets/controls", + "model_name": "DescriptionStyleModel", + "model_module_version": "1.5.0", + "state": { + "_model_module": "@jupyter-widgets/controls", + "_model_module_version": "1.5.0", + "_model_name": "DescriptionStyleModel", + "_view_count": null, + "_view_module": "@jupyter-widgets/base", + "_view_module_version": "1.2.0", + "_view_name": "StyleView", + "description_width": "" + } + }, + "55a45baafaad4a4ca2cad720da0a80aa": { + "model_module": "@jupyter-widgets/base", + "model_name": "LayoutModel", + "model_module_version": "1.2.0", + "state": { + "_model_module": "@jupyter-widgets/base", + "_model_module_version": "1.2.0", + "_model_name": "LayoutModel", + "_view_count": null, + "_view_module": "@jupyter-widgets/base", + "_view_module_version": "1.2.0", + "_view_name": "LayoutView", + "align_content": null, + "align_items": null, + "align_self": null, + "border": null, + "bottom": null, + "display": null, + "flex": null, + "flex_flow": null, + "grid_area": null, + "grid_auto_columns": null, + "grid_auto_flow": null, + "grid_auto_rows": null, + "grid_column": null, + "grid_gap": null, + "grid_row": null, + "grid_template_areas": null, + "grid_template_columns": null, + "grid_template_rows": null, + "height": null, + "justify_content": null, + "justify_items": null, + "left": null, + "margin": null, + "max_height": null, + "max_width": null, + "min_height": null, + "min_width": null, + "object_fit": null, + "object_position": null, + "order": null, + "overflow": null, + "overflow_x": null, + "overflow_y": null, + "padding": null, + "right": null, + "top": null, + "visibility": null, + "width": null + } + }, + "7f2a940f7f114e439f63e5e900748511": { + "model_module": "@jupyter-widgets/controls", + "model_name": "ProgressStyleModel", + "model_module_version": "1.5.0", + "state": { + "_model_module": "@jupyter-widgets/controls", + "_model_module_version": "1.5.0", + "_model_name": "ProgressStyleModel", + "_view_count": null, + "_view_module": "@jupyter-widgets/base", + "_view_module_version": "1.2.0", + "_view_name": "StyleView", + "bar_color": null, + "description_width": "" + } + }, + "50282721d29447c89bc05559a99183dd": { + "model_module": "@jupyter-widgets/base", + "model_name": "LayoutModel", + "model_module_version": "1.2.0", + "state": { + "_model_module": "@jupyter-widgets/base", + "_model_module_version": "1.2.0", + "_model_name": "LayoutModel", + "_view_count": null, + "_view_module": "@jupyter-widgets/base", + "_view_module_version": "1.2.0", + "_view_name": "LayoutView", + "align_content": null, + "align_items": null, + "align_self": null, + "border": null, + "bottom": null, + "display": null, + "flex": null, + "flex_flow": null, + "grid_area": null, + "grid_auto_columns": null, + "grid_auto_flow": null, + "grid_auto_rows": null, + "grid_column": null, + "grid_gap": null, + "grid_row": null, + "grid_template_areas": null, + "grid_template_columns": null, + "grid_template_rows": null, + "height": null, + "justify_content": null, + "justify_items": null, + "left": null, + "margin": null, + "max_height": null, + "max_width": null, + "min_height": null, + "min_width": null, + "object_fit": null, + "object_position": null, + "order": null, + "overflow": null, + "overflow_x": null, + "overflow_y": null, + "padding": null, + "right": null, + "top": null, + "visibility": null, + "width": null + } + }, + "23c5a724d0fa40efac45f1fe8fc0b9c5": { + "model_module": "@jupyter-widgets/controls", + "model_name": "DescriptionStyleModel", + "model_module_version": "1.5.0", + "state": { + "_model_module": "@jupyter-widgets/controls", + "_model_module_version": "1.5.0", + "_model_name": "DescriptionStyleModel", + "_view_count": null, + "_view_module": "@jupyter-widgets/base", + "_view_module_version": "1.2.0", + "_view_name": "StyleView", + "description_width": "" + } + } + } + } + }, + "cells": [ + { + "cell_type": "markdown", + "source": [ + "## Evaluating RAG with RAGAs using GPT-4o\n", + "\n", + "Ragas is a **framework for evaluating Retrieval Augmented Generation (RAG) pipelines**.\n", + "\n", + "Ragas provides you with the tools/metrics based on the latest research for evaluating LLM-generated text to give you insights about your RAG pipeline. Ragas can be integrated with your CI/CD to provide continuous checks to ensure performance.\n", + "\n", + "GPT4-o is used as an LLM to generate responses out of semantically close context chunks.\n", + "\n", + "![flow.png]()" + ], + "metadata": { + "id": "AwhxwHTf4VZp" + } + }, + { + "cell_type": "code", + "execution_count": null, + "metadata": { + "colab": { + "base_uri": "https://localhost:8080/" + }, + "id": "1mr4fXemsYci", + "outputId": "dd51d890-7da2-45ec-b14f-d96169bb8bdf" + }, + "outputs": [ + { + "output_type": "stream", + "name": "stdout", + "text": [ + "\u001b[2K \u001b[90m━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━\u001b[0m \u001b[32m973.5/973.5 kB\u001b[0m \u001b[31m10.7 MB/s\u001b[0m eta \u001b[36m0:00:00\u001b[0m\n", + "\u001b[2K \u001b[90m━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━\u001b[0m \u001b[32m320.6/320.6 kB\u001b[0m \u001b[31m38.4 MB/s\u001b[0m eta \u001b[36m0:00:00\u001b[0m\n", + "\u001b[2K \u001b[90m━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━\u001b[0m \u001b[32m18.9/18.9 MB\u001b[0m \u001b[31m71.7 MB/s\u001b[0m eta \u001b[36m0:00:00\u001b[0m\n", + "\u001b[2K \u001b[90m━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━\u001b[0m \u001b[32m84.1/84.1 kB\u001b[0m \u001b[31m11.7 MB/s\u001b[0m eta \u001b[36m0:00:00\u001b[0m\n", + "\u001b[2K \u001b[90m━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━\u001b[0m \u001b[32m308.5/308.5 kB\u001b[0m \u001b[31m38.4 MB/s\u001b[0m eta \u001b[36m0:00:00\u001b[0m\n", + "\u001b[2K \u001b[90m━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━\u001b[0m \u001b[32m122.8/122.8 kB\u001b[0m \u001b[31m15.9 MB/s\u001b[0m eta \u001b[36m0:00:00\u001b[0m\n", + "\u001b[2K \u001b[90m━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━\u001b[0m \u001b[32m75.6/75.6 kB\u001b[0m \u001b[31m11.5 MB/s\u001b[0m eta \u001b[36m0:00:00\u001b[0m\n", + "\u001b[2K \u001b[90m━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━\u001b[0m \u001b[32m22.8/22.8 MB\u001b[0m \u001b[31m58.6 MB/s\u001b[0m eta \u001b[36m0:00:00\u001b[0m\n", + "\u001b[2K \u001b[90m━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━\u001b[0m \u001b[32m542.0/542.0 kB\u001b[0m \u001b[31m46.5 MB/s\u001b[0m eta \u001b[36m0:00:00\u001b[0m\n", + "\u001b[2K \u001b[90m━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━\u001b[0m \u001b[32m1.1/1.1 MB\u001b[0m \u001b[31m51.2 MB/s\u001b[0m eta \u001b[36m0:00:00\u001b[0m\n", + "\u001b[2K \u001b[90m━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━\u001b[0m \u001b[32m2.1/2.1 MB\u001b[0m \u001b[31m48.3 MB/s\u001b[0m eta \u001b[36m0:00:00\u001b[0m\n", + "\u001b[2K \u001b[90m━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━\u001b[0m \u001b[32m71.1/71.1 kB\u001b[0m \u001b[31m8.8 MB/s\u001b[0m eta \u001b[36m0:00:00\u001b[0m\n", + "\u001b[2K \u001b[90m━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━\u001b[0m \u001b[32m77.9/77.9 kB\u001b[0m \u001b[31m10.9 MB/s\u001b[0m eta \u001b[36m0:00:00\u001b[0m\n", + "\u001b[2K \u001b[90m━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━\u001b[0m \u001b[32m58.3/58.3 kB\u001b[0m \u001b[31m6.1 MB/s\u001b[0m eta \u001b[36m0:00:00\u001b[0m\n", + "\u001b[2K \u001b[90m━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━\u001b[0m \u001b[32m53.0/53.0 kB\u001b[0m \u001b[31m8.0 MB/s\u001b[0m eta \u001b[36m0:00:00\u001b[0m\n", + "\u001b[2K \u001b[90m━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━\u001b[0m \u001b[32m142.5/142.5 kB\u001b[0m \u001b[31m20.1 MB/s\u001b[0m eta \u001b[36m0:00:00\u001b[0m\n", + "\u001b[2K \u001b[90m━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━\u001b[0m \u001b[32m98.7/98.7 kB\u001b[0m \u001b[31m13.8 MB/s\u001b[0m eta \u001b[36m0:00:00\u001b[0m\n", + "\u001b[2K \u001b[90m━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━\u001b[0m \u001b[32m116.3/116.3 kB\u001b[0m \u001b[31m18.6 MB/s\u001b[0m eta \u001b[36m0:00:00\u001b[0m\n", + "\u001b[2K \u001b[90m━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━\u001b[0m \u001b[32m194.1/194.1 kB\u001b[0m \u001b[31m22.4 MB/s\u001b[0m eta \u001b[36m0:00:00\u001b[0m\n", + "\u001b[2K \u001b[90m━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━\u001b[0m \u001b[32m134.8/134.8 kB\u001b[0m \u001b[31m21.0 MB/s\u001b[0m eta \u001b[36m0:00:00\u001b[0m\n", + "\u001b[2K \u001b[90m━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━\u001b[0m \u001b[32m49.3/49.3 kB\u001b[0m \u001b[31m8.1 MB/s\u001b[0m eta \u001b[36m0:00:00\u001b[0m\n", + "\u001b[?25h" + ] + } + ], + "source": [ + "!pip install langchain openai lancedb ragas -q" + ] + }, + { + "cell_type": "markdown", + "source": [ + "### Setup `OPENAI_API_KEY` as an environment variable" + ], + "metadata": { + "id": "z8hT0Jn74ZmT" + } + }, + { + "cell_type": "code", + "source": [ + "import os\n", + "\n", + "os.environ[\"OPENAI_API_KEY\"] = \"sk-proj-...\"" + ], + "metadata": { + "id": "YHgQd_1rI04R" + }, + "execution_count": null, + "outputs": [] + }, + { + "cell_type": "markdown", + "source": [ + "### Load .txt file and convert them into chunks" + ], + "metadata": { + "id": "mM0tf_vo6GbI" + } + }, + { + "cell_type": "code", + "source": [ + "import requests\n", + "from langchain.document_loaders import TextLoader\n", + "from langchain.text_splitter import CharacterTextSplitter\n", + "\n", + "url = \"https://raw.githubusercontent.com/hwchase17/chroma-langchain/master/state_of_the_union.txt\"\n", + "res = requests.get(url)\n", + "with open(\"state_of_the_union.txt\", \"w\") as f:\n", + " f.write(res.text)\n", + "\n", + "# Load the data\n", + "loader = TextLoader(\"./state_of_the_union.txt\")\n", + "documents = loader.load()\n", + "\n", + "# Chunk the data\n", + "text_splitter = CharacterTextSplitter(chunk_size=200, chunk_overlap=10)\n", + "chunks = text_splitter.split_documents(documents)" + ], + "metadata": { + "id": "IkLbg-_1I3Rt", + "colab": { + "base_uri": "https://localhost:8080/" + }, + "outputId": "4248c952-c719-4a30-ee7e-06d2f1b17449" + }, + "execution_count": null, + "outputs": [ + { + "output_type": "stream", + "name": "stderr", + "text": [ + "WARNING:langchain_text_splitters.base:Created a chunk of size 215, which is longer than the specified 200\n", + "WARNING:langchain_text_splitters.base:Created a chunk of size 232, which is longer than the specified 200\n", + "WARNING:langchain_text_splitters.base:Created a chunk of size 242, which is longer than the specified 200\n", + "WARNING:langchain_text_splitters.base:Created a chunk of size 219, which is longer than the specified 200\n", + "WARNING:langchain_text_splitters.base:Created a chunk of size 304, which is longer than the specified 200\n", + "WARNING:langchain_text_splitters.base:Created a chunk of size 205, which is longer than the specified 200\n", + "WARNING:langchain_text_splitters.base:Created a chunk of size 332, which is longer than the specified 200\n", + "WARNING:langchain_text_splitters.base:Created a chunk of size 215, which is longer than the specified 200\n", + "WARNING:langchain_text_splitters.base:Created a chunk of size 203, which is longer than the specified 200\n", + "WARNING:langchain_text_splitters.base:Created a chunk of size 281, which is longer than the specified 200\n", + "WARNING:langchain_text_splitters.base:Created a chunk of size 201, which is longer than the specified 200\n", + "WARNING:langchain_text_splitters.base:Created a chunk of size 250, which is longer than the specified 200\n", + "WARNING:langchain_text_splitters.base:Created a chunk of size 325, which is longer than the specified 200\n", + "WARNING:langchain_text_splitters.base:Created a chunk of size 242, which is longer than the specified 200\n" + ] + } + ] + }, + { + "cell_type": "markdown", + "source": [ + "### Setup Retriever\n", + "\n", + "Retriever utilizes **LanceDB** for scalable vector search and advanced retrieval in RAG, delivering blazing fast performance for searching large sets of embeddings." + ], + "metadata": { + "id": "pgetSLZXEJ2Q" + } + }, + { + "cell_type": "code", + "source": [ + "from langchain.embeddings import OpenAIEmbeddings\n", + "from langchain.vectorstores import LanceDB\n", + "import lancedb\n", + "\n", + "openai_embed = OpenAIEmbeddings()\n", + "\n", + "# Setup lancedb\n", + "db = lancedb.connect(\"/tmp/lancedb\")\n", + "table = db.create_table(\n", + " \"raga_eval\",\n", + " data=[{\"vector\": openai_embed.embed_query(\"Hello World\"), \"text\": \"Hello World\"}],\n", + " mode=\"overwrite\",\n", + ")\n", + "\n", + "# Populate vector database\n", + "vectorstore = LanceDB.from_documents(\n", + " client=table, documents=chunks, embedding=openai_embed, by_text=False\n", + ")\n", + "\n", + "# Define vectorstore as retriever to enable semantic search\n", + "retriever = vectorstore.as_retriever()" + ], + "metadata": { + "id": "2PYhU_vvJC0P" + }, + "execution_count": null, + "outputs": [] + }, + { + "cell_type": "markdown", + "source": [ + "### Setup RAG Pipeline with Prompt template" + ], + "metadata": { + "id": "9CFnNEfuExj7" + } + }, + { + "cell_type": "code", + "source": [ + "from langchain.chat_models import ChatOpenAI\n", + "from langchain.prompts import ChatPromptTemplate\n", + "from langchain.schema.runnable import RunnablePassthrough\n", + "from langchain.schema.output_parser import StrOutputParser\n", + "\n", + "# Define LLM\n", + "llm = ChatOpenAI(model_name=\"gpt-4o\", temperature=0)\n", + "\n", + "# Define Prompt template\n", + "template = \"\"\"You are an assistant for question-answering tasks.\n", + "Use the following pieces of retrieved context to answer the question.\n", + "If you don't know the answer, just say that you don't know.\n", + "Use two sentences maximum and keep the answer concise.\n", + "Question: {question}\n", + "Context: {context}\n", + "Answer:\n", + "\"\"\"\n", + "\n", + "prompt = ChatPromptTemplate.from_template(template)\n", + "\n", + "# Setup RAG pipeline\n", + "rag_chain = (\n", + " {\"context\": retriever, \"question\": RunnablePassthrough()}\n", + " | prompt\n", + " | llm\n", + " | StrOutputParser()\n", + ")" + ], + "metadata": { + "id": "-TiQhbNyLSKv" + }, + "execution_count": null, + "outputs": [] + }, + { + "cell_type": "markdown", + "source": [ + "### Sample Questions with their Expected Answers\n", + "\n", + "Define a set of questions with their answers for creating dataset including ground truth, generated answers with their context using which they are generated." + ], + "metadata": { + "id": "Ge8JtkNXFXhI" + } + }, + { + "cell_type": "code", + "source": [ + "from datasets import Dataset\n", + "\n", + "questions = [\n", + " \"What did the president say about Justice Breyer?\",\n", + " \"What did the president say about Intel's CEO?\",\n", + " \"What did the president say about gun violence?\",\n", + "]\n", + "ground_truth = [\n", + " \"The president said that Justice Breyer has dedicated his life to serve the country and thanked him for his service.\",\n", + " \"The president said that Pat Gelsinger is ready to increase Intel's investment to $100 billion.\",\n", + " \"The president asked Congress to pass proven measures to reduce gun violence.\",\n", + "]\n", + "answers = []\n", + "contexts = []\n", + "\n", + "# Inference\n", + "for query in questions:\n", + " answers.append(rag_chain.invoke(query))\n", + " contexts.append(\n", + " [docs.page_content for docs in retriever.get_relevant_documents(query)]\n", + " )\n", + "\n", + "# To dict\n", + "data = {\n", + " \"question\": questions,\n", + " \"answer\": answers,\n", + " \"contexts\": contexts,\n", + " \"ground_truth\": ground_truth,\n", + "}\n", + "\n", + "# Convert dict to dataset\n", + "dataset = Dataset.from_dict(data)" + ], + "metadata": { + "id": "PGiU57QJMP0J" + }, + "execution_count": null, + "outputs": [] + }, + { + "cell_type": "markdown", + "source": [ + "### RAGA Evaluation Pipeline\n", + "\n", + "Simple pipeline of RAGA for evaluation with the listed metrics to understand and evaluate the RAG system.\n", + "\n", + "**Metrics** on which we will evaulate are answer_correctness,\n", + "faithfulness,\n", + "answer_similarity,\n", + "context_precision,\n", + "context_utilization,\n", + "context_recall,\n", + "context_relevancy,\n", + "answer_relevancy, and\n", + "context_entity_recall" + ], + "metadata": { + "id": "szBZ1nwkFruF" + } + }, + { + "cell_type": "code", + "source": [ + "from ragas import evaluate\n", + "from ragas.metrics import (\n", + " answer_correctness,\n", + " faithfulness,\n", + " answer_similarity,\n", + " context_precision,\n", + " context_utilization,\n", + " context_recall,\n", + " context_relevancy,\n", + " answer_relevancy,\n", + " context_entity_recall,\n", + ")\n", + "\n", + "\n", + "# evaluating dataest on listed metrics\n", + "result = evaluate(\n", + " dataset=dataset,\n", + " metrics=[\n", + " answer_correctness,\n", + " faithfulness,\n", + " answer_similarity,\n", + " context_precision,\n", + " context_utilization,\n", + " context_recall,\n", + " context_relevancy,\n", + " answer_relevancy,\n", + " context_entity_recall,\n", + " ],\n", + ")\n", + "\n", + "\n", + "df = result.to_pandas()" + ], + "metadata": { + "colab": { + "base_uri": "https://localhost:8080/", + "height": 49, + "referenced_widgets": [ + "91f4187ef74b4c0791fa9058899f7454", + "d9fb5f1092e24ba59cb768842ff8f828", + "6441a4ce0f644c51aa6c140de43ed31d", + "a6b459a38e5c4386b85ee7ebc0e302a4", + "cf96076499974020b541a541648028f4", + "82cd48cdf6f144e19cb3ef0a0553b689", + "8e537aa094004828b08a55a94cbd7dff", + "55a45baafaad4a4ca2cad720da0a80aa", + "7f2a940f7f114e439f63e5e900748511", + "50282721d29447c89bc05559a99183dd", + "23c5a724d0fa40efac45f1fe8fc0b9c5" + ] + }, + "id": "Samkm2TnMUQA", + "outputId": "f50e72d4-55fd-4f74-f0f6-334af8353ae2" + }, + "execution_count": null, + "outputs": [ + { + "output_type": "display_data", + "data": { + "text/plain": [ + "Evaluating: 0%| | 0/27 [00:00\n", + "
\n", + "\n", + "\n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + "
questionanswercontextsground_truthanswer_correctnessfaithfulnessanswer_similaritycontext_precisioncontext_utilizationcontext_recallcontext_relevancyanswer_relevancycontext_entity_recall
0What did the president say about Justice Breyer?The president honored Justice Stephen Breyer a...[And I did that 4 days ago, when I nominated C...The president said that Justice Breyer has ded...0.4154871.00.9119481.01.01.00.2000000.8415890.500000
1What did the president say about Intel's CEO?The president said that Intel’s CEO, Pat Gelsi...[Intel’s CEO, Pat Gelsinger, who is here tonig...The president said that Pat Gelsinger is ready...0.6199980.00.9801031.01.01.00.0909090.8970840.750000
2What did the president say about gun violence?The president called on Congress to pass prove...[And I ask Congress to pass proven measures to...The president asked Congress to pass proven me...0.6062301.00.9248951.01.01.00.2500000.9148880.666667
\n", + "
\n", + "
\n", + "\n", + "
\n", + " \n", + "\n", + " \n", + "\n", + " \n", + "
\n", + "\n", + "\n", + "
\n", + " \n", + "\n", + "\n", + "\n", + " \n", + "
\n", + "\n", + "
\n", + " \n", + " \n", + " \n", + "
\n", + "\n", + "
\n", + " \n" + ], + "application/vnd.google.colaboratory.intrinsic+json": { + "type": "dataframe", + "variable_name": "df", + "summary": "{\n \"name\": \"df\",\n \"rows\": 3,\n \"fields\": [\n {\n \"column\": \"question\",\n \"properties\": {\n \"dtype\": \"string\",\n \"num_unique_values\": 3,\n \"samples\": [\n \"What did the president say about Justice Breyer?\",\n \"What did the president say about Intel's CEO?\",\n \"What did the president say about gun violence?\"\n ],\n \"semantic_type\": \"\",\n \"description\": \"\"\n }\n },\n {\n \"column\": \"answer\",\n \"properties\": {\n \"dtype\": \"string\",\n \"num_unique_values\": 3,\n \"samples\": [\n \"The president honored Justice Stephen Breyer as an Army veteran, Constitutional scholar, and retiring Justice of the United States Supreme Court, and thanked him for his service. He also mentioned that Circuit Court of Appeals Judge Ketanji Brown Jackson, who he nominated, will continue Justice Breyer\\u2019s legacy of excellence.\",\n \"The president said that Intel\\u2019s CEO, Pat Gelsinger, told him they are ready to increase their investment from $20 billion to $100 billion.\",\n \"The president called on Congress to pass proven measures to reduce gun violence, including universal background checks and banning assault weapons and high-capacity magazines. He also questioned why individuals on a terrorist list should be able to purchase a weapon and advocated for repealing the liability shield that protects gun manufacturers from being sued.\"\n ],\n \"semantic_type\": \"\",\n \"description\": \"\"\n }\n },\n {\n \"column\": \"contexts\",\n \"properties\": {\n \"dtype\": \"object\",\n \"semantic_type\": \"\",\n \"description\": \"\"\n }\n },\n {\n \"column\": \"ground_truth\",\n \"properties\": {\n \"dtype\": \"string\",\n \"num_unique_values\": 3,\n \"samples\": [\n \"The president said that Justice Breyer has dedicated his life to serve the country and thanked him for his service.\",\n \"The president said that Pat Gelsinger is ready to increase Intel's investment to $100 billion.\",\n \"The president asked Congress to pass proven measures to reduce gun violence.\"\n ],\n \"semantic_type\": \"\",\n \"description\": \"\"\n }\n },\n {\n \"column\": \"answer_correctness\",\n \"properties\": {\n \"dtype\": \"number\",\n \"std\": 0.11430741128276067,\n \"min\": 0.4154869951100285,\n \"max\": 0.6199979663207625,\n \"num_unique_values\": 3,\n \"samples\": [\n 0.4154869951100285,\n 0.6199979663207625,\n 0.6062297668831289\n ],\n \"semantic_type\": \"\",\n \"description\": \"\"\n }\n },\n {\n \"column\": \"faithfulness\",\n \"properties\": {\n \"dtype\": \"number\",\n \"std\": 0.5773502691896258,\n \"min\": 0.0,\n \"max\": 1.0,\n \"num_unique_values\": 2,\n \"samples\": [\n 0.0,\n 1.0\n ],\n \"semantic_type\": \"\",\n \"description\": \"\"\n }\n },\n {\n \"column\": \"answer_similarity\",\n \"properties\": {\n \"dtype\": \"number\",\n \"std\": 0.03619563595630723,\n \"min\": 0.911947980440114,\n \"max\": 0.9801032234987175,\n \"num_unique_values\": 3,\n \"samples\": [\n 0.911947980440114,\n 0.9801032234987175\n ],\n \"semantic_type\": \"\",\n \"description\": \"\"\n }\n },\n {\n \"column\": \"context_precision\",\n \"properties\": {\n \"dtype\": \"number\",\n \"std\": 2.8867515847990063e-11,\n \"min\": 0.9999999999,\n \"max\": 0.99999999995,\n \"num_unique_values\": 2,\n \"samples\": [\n 0.9999999999,\n 0.99999999995\n ],\n \"semantic_type\": \"\",\n \"description\": \"\"\n }\n },\n {\n \"column\": \"context_utilization\",\n \"properties\": {\n \"dtype\": \"number\",\n \"std\": 2.8867515847990063e-11,\n \"min\": 0.9999999999,\n \"max\": 0.99999999995,\n \"num_unique_values\": 2,\n \"samples\": [\n 0.9999999999,\n 0.99999999995\n ],\n \"semantic_type\": \"\",\n \"description\": \"\"\n }\n },\n {\n \"column\": \"context_recall\",\n \"properties\": {\n \"dtype\": \"number\",\n \"std\": 0.0,\n \"min\": 1.0,\n \"max\": 1.0,\n \"num_unique_values\": 1,\n \"samples\": [\n 1.0\n ],\n \"semantic_type\": \"\",\n \"description\": \"\"\n }\n },\n {\n \"column\": \"context_relevancy\",\n \"properties\": {\n \"dtype\": \"number\",\n \"std\": 0.08135390156762909,\n \"min\": 0.09090909090909091,\n \"max\": 0.25,\n \"num_unique_values\": 3,\n \"samples\": [\n 0.2\n ],\n \"semantic_type\": \"\",\n \"description\": \"\"\n }\n },\n {\n \"column\": \"answer_relevancy\",\n \"properties\": {\n \"dtype\": \"number\",\n \"std\": 0.038230490911004,\n \"min\": 0.8415890798965432,\n \"max\": 0.9148879952296768,\n \"num_unique_values\": 3,\n \"samples\": [\n 0.8415890798965432\n ],\n \"semantic_type\": \"\",\n \"description\": \"\"\n }\n },\n {\n \"column\": \"context_entity_recall\",\n \"properties\": {\n \"dtype\": \"number\",\n \"std\": 0.12729376960740932,\n \"min\": 0.4999999975,\n \"max\": 0.7499999981250001,\n \"num_unique_values\": 3,\n \"samples\": [\n 0.4999999975\n ],\n \"semantic_type\": \"\",\n \"description\": \"\"\n }\n }\n ]\n}" + } + }, + "metadata": {}, + "execution_count": 22 + } + ] + } + ] +} \ No newline at end of file diff --git a/examples/Evaluating_RAG_with_RAGAs/README.md b/examples/Evaluating_RAG_with_RAGAs/README.md new file mode 100644 index 00000000..98c70693 --- /dev/null +++ b/examples/Evaluating_RAG_with_RAGAs/README.md @@ -0,0 +1,13 @@ +# Evaluating RAG with RAGAs and GPT-4o +
Open In Colab + + +Ragas is a **framework for evaluating Retrieval Augmented Generation (RAG) pipelines**. + +Ragas provides you with the tools/metrics based on the latest research for evaluating LLM-generated text to give you insights about your RAG pipeline. Ragas can be integrated with your CI/CD to provide continuous checks to ensure performance. + +GPT4-o is used as an LLM to generate responses out of semantically close context chunks. + +![flow](../../assets/rag_evaluation_flow.png) + +Try it out on Colab - Open In Colab \ No newline at end of file diff --git a/examples/movie-recommendation-with-genres/movie_recommendation_with_doc2vec_and_lancedb.ipynb b/examples/movie-recommendation-with-genres/movie_recommendation_with_doc2vec_and_lancedb.ipynb index fdb29a77..2a75b19a 100644 --- a/examples/movie-recommendation-with-genres/movie_recommendation_with_doc2vec_and_lancedb.ipynb +++ b/examples/movie-recommendation-with-genres/movie_recommendation_with_doc2vec_and_lancedb.ipynb @@ -1,594 +1,614 @@ { - "cells": [ - { - "cell_type": "markdown", - "metadata": { - "id": "K45xhdPRsZJV" - }, - "source": [ - "# Movie Recommendation System using Doc2vec Embeddings and Vector DB" - ] - }, - { - "cell_type": "markdown", - "metadata": { - "id": "XUj6NXD0sdgf" - }, - "source": [ - "This Colab notebook aims to illustrate the process of creating a recommendation system using embeddings and a Vector DB.\n", - "\n", - "This approach involves combining the various movie genres or characteristics of a movie to form Doc2Vec embeddings, which offer a comprehensive portrayal of the movie content.\n", - "\n", - "These embeddings serve dual purposes: they can either be directly inputted into a classification model for genre classification or stored in a VectorDB. By storing embeddings in a VectorDB, efficient retrieval and query search for recommendations become possible at a later stage.\n" - ] - }, - { - "cell_type": "markdown", - "metadata": { - "id": "qEa74a_Wtpc7" - }, - "source": [ - "### Installing the relevant dependencies\n" - ] - }, - { - "cell_type": "code", - "execution_count": null, - "metadata": { - "id": "hyde90IntuFi" - }, - "outputs": [], - "source": [ - "!pip install torch scikit-learn lancedb nltk gensim lancedb scipy==1.12 kaggle" - ] - }, - { - "cell_type": "markdown", - "metadata": { - "id": "shPjHTZbtxTh" - }, - "source": [ - "## Kaggle Configuration and Data Needs\n", - "\n", - "We are using a movies metadata data which is being uploaded on the Kaggle. To download the dataset and use it for our recommendation system, we will need a `kaggle.json` file containing our creds.\n", - "\n", - "You can download the `kaggle.json` file from your Kaggle account settings. Follow these steps and make your life easy.\n", - "\n", - "1. Go to Kaggle and log in to your account.\n", - "2. Navigate to Your Account Settings and click on your profile picture in the top right corner of the page, Now From the dropdown menu, select `Account`.\n", - "3. Scroll down to the `API` section, Click on `Create New API Token`. This will download a file named kaggle.json to your computer.\n", - "\n", - "Once you have the `kaggle.json` file, you need to upload it here on colab data space. After uploading the `kaggle.json` file, run the following code to set up the credentials and download the dataset in `data` directory" - ] - }, - { - "cell_type": "code", - "execution_count": null, - "metadata": { - "id": "6Tl2qzgKsWtF" - }, - "outputs": [], - "source": [ - "import json\n", - "import os\n", - "\n", - "# Assuming kaggle.json is uploaded to the current directory\n", - "with open('kaggle.json') as f:\n", - " kaggle_credentials = json.load(f)\n", - "\n", - "os.environ['KAGGLE_USERNAME'] = kaggle_credentials['username']\n", - "os.environ['KAGGLE_KEY'] = kaggle_credentials['key']" - ] - }, - { - "cell_type": "code", - "execution_count": null, - "metadata": { - "id": "8va-0of3sU0x" - }, - "outputs": [], - "source": [ - "from kaggle.api.kaggle_api_extended import KaggleApi\n", - "\n", - "# Initialize the Kaggle API\n", - "api = KaggleApi()\n", - "api.authenticate()\n", - "\n", - "# Specify the dataset you want to download\n", - "dataset = 'rounakbanik/the-movies-dataset'\n", - "destination = 'data/'\n", - "\n", - "# Create the destination directory if it doesn't exist\n", - "if not os.path.exists(destination):\n", - " os.makedirs(destination)\n", - "\n", - "# Download the dataset\n", - "api.dataset_download_files(dataset, path=destination, unzip=True)\n", - "\n", - "print(f\"Dataset {dataset} downloaded to {destination}\")" - ] - }, - { - "cell_type": "code", - "execution_count": null, - "metadata": { - "id": "hBYzad3lrY4e", - "outputId": "5a8f7983-80be-47e0-aa9c-ae4e10495c1e" - }, - "outputs": [ - { - "name": "stderr", - "output_type": "stream", - "text": [ - "100%|██████████| 1000/1000 [00:00<00:00, 5050.83it/s]\n", - "100%|██████████| 1000/1000 [00:00<00:00, 5161.29it/s]\n", - "100%|██████████| 1000/1000 [00:00<00:00, 5006.18it/s]\n", - "100%|██████████| 1000/1000 [00:00<00:00, 5222.83it/s]\n", - "100%|██████████| 1000/1000 [00:00<00:00, 5216.24it/s]\n", - "100%|██████████| 1000/1000 [00:00<00:00, 5171.35it/s]\n", - "100%|██████████| 1000/1000 [00:00<00:00, 5109.78it/s]\n", - "100%|██████████| 1000/1000 [00:00<00:00, 5222.42it/s]\n", - "100%|██████████| 1000/1000 [00:00<00:00, 5133.39it/s]\n", - "100%|██████████| 1000/1000 [00:00<00:00, 5024.74it/s]\n", - "100%|██████████| 1000/1000 [00:00<00:00, 5117.18it/s]\n", - "100%|██████████| 1000/1000 [00:00<00:00, 4963.78it/s]\n", - "100%|██████████| 1000/1000 [00:00<00:00, 5405.55it/s]\n", - "100%|██████████| 1000/1000 [00:00<00:00, 5369.51it/s]\n", - "100%|██████████| 1000/1000 [00:00<00:00, 5349.33it/s]\n", - "100%|██████████| 1000/1000 [00:00<00:00, 5374.53it/s]\n", - "100%|██████████| 1000/1000 [00:00<00:00, 5194.32it/s]\n", - "100%|██████████| 1000/1000 [00:00<00:00, 5296.75it/s]\n", - "100%|██████████| 1000/1000 [00:00<00:00, 5204.32it/s]\n", - "100%|██████████| 1000/1000 [00:00<00:00, 5309.43it/s]\n", - "100%|██████████| 1000/1000 [00:00<00:00, 5333.12it/s]\n", - "100%|██████████| 1000/1000 [00:00<00:00, 5289.35it/s]\n", - "100%|██████████| 1000/1000 [00:00<00:00, 5317.42it/s]\n", - "100%|██████████| 1000/1000 [00:00<00:00, 5322.46it/s]\n", - "100%|██████████| 1000/1000 [00:00<00:00, 5378.43it/s]\n", - "100%|██████████| 1000/1000 [00:00<00:00, 5488.32it/s]\n", - "100%|██████████| 1000/1000 [00:00<00:00, 5546.43it/s]\n", - "100%|██████████| 1000/1000 [00:00<00:00, 2502.38it/s]\n", - "100%|██████████| 1000/1000 [00:00<00:00, 5369.91it/s]\n", - "100%|██████████| 1000/1000 [00:00<00:00, 4354.99it/s]\n", - "100%|██████████| 1000/1000 [00:00<00:00, 5193.60it/s]\n", - "100%|██████████| 1000/1000 [00:00<00:00, 5536.27it/s]\n", - "100%|██████████| 1000/1000 [00:00<00:00, 3476.56it/s]\n", - "100%|██████████| 1000/1000 [00:00<00:00, 4819.07it/s]\n", - "100%|██████████| 1000/1000 [00:00<00:00, 4500.37it/s]\n", - "100%|██████████| 1000/1000 [00:00<00:00, 5184.11it/s]\n", - "100%|██████████| 1000/1000 [00:00<00:00, 5098.14it/s]\n", - "100%|██████████| 1000/1000 [00:00<00:00, 5523.73it/s]\n", - "100%|██████████| 1000/1000 [00:00<00:00, 4655.12it/s]\n", - "100%|██████████| 1000/1000 [00:00<00:00, 5113.63it/s]\n", - "100%|██████████| 1000/1000 [00:00<00:00, 5336.63it/s]\n", - "100%|██████████| 1000/1000 [00:00<00:00, 5564.83it/s]\n", - "100%|██████████| 1000/1000 [00:00<00:00, 5310.91it/s]\n", - "100%|██████████| 1000/1000 [00:00<00:00, 5533.46it/s]\n", - "100%|██████████| 1000/1000 [00:00<00:00, 4255.41it/s]\n", - "100%|██████████| 466/466 [00:00<00:00, 5617.03it/s]\n", - "Building Vocabulary: 100%|██████████| 44506/44506 [00:00<00:00, 104121.48it/s]\n", - "Epoch 1: 100%|██████████| 44506/44506 [00:02<00:00, 20444.80it/s]\n", - "Epoch 2: 100%|██████████| 44506/44506 [00:02<00:00, 20700.43it/s]\n", - "Epoch 3: 100%|██████████| 44506/44506 [00:02<00:00, 20831.06it/s]\n", - "Epoch 4: 100%|██████████| 44506/44506 [00:02<00:00, 20885.78it/s]\n", - "Epoch 5: 100%|██████████| 44506/44506 [00:02<00:00, 19616.38it/s]\n", - "Epoch 6: 100%|██████████| 44506/44506 [00:02<00:00, 19634.24it/s]\n", - "Epoch 7: 100%|██████████| 44506/44506 [00:02<00:00, 20579.08it/s]\n", - "Epoch 8: 100%|██████████| 44506/44506 [00:02<00:00, 20727.00it/s]\n", - "Epoch 9: 100%|██████████| 44506/44506 [00:02<00:00, 21242.19it/s]\n", - "Epoch 10: 100%|██████████| 44506/44506 [00:02<00:00, 18476.39it/s]\n", - "Epoch 11: 100%|██████████| 44506/44506 [00:02<00:00, 21169.07it/s]\n", - "Epoch 12: 100%|██████████| 44506/44506 [00:02<00:00, 20967.64it/s]\n", - "Epoch 13: 100%|██████████| 44506/44506 [00:02<00:00, 20192.34it/s]\n", - "Epoch 14: 100%|██████████| 44506/44506 [00:02<00:00, 18910.62it/s]\n", - "Epoch 15: 100%|██████████| 44506/44506 [00:02<00:00, 20810.41it/s]\n", - "Epoch 16: 100%|██████████| 44506/44506 [00:02<00:00, 21361.88it/s]\n", - "Epoch 17: 100%|██████████| 44506/44506 [00:02<00:00, 18440.51it/s]\n", - "Epoch 18: 100%|██████████| 44506/44506 [00:02<00:00, 21206.01it/s]\n", - "Epoch 19: 100%|██████████| 44506/44506 [00:02<00:00, 20086.00it/s]\n", - "Epoch 20: 100%|██████████| 44506/44506 [00:02<00:00, 20943.08it/s]\n" - ] - } - ], - "source": [ - "import pandas as pd\n", - "import numpy as np\n", - "import torch\n", - "import torch.nn as nn\n", - "import torch.optim as optim\n", - "from torch.utils.data import DataLoader, TensorDataset\n", - "from gensim.models.doc2vec import Doc2Vec, TaggedDocument\n", - "from nltk.tokenize import word_tokenize\n", - "from sklearn.preprocessing import MultiLabelBinarizer\n", - "from sklearn.model_selection import train_test_split\n", - "from tqdm import tqdm\n", - "\n", - "# Read data from CSV file\n", - "movie_data = pd.read_csv('/Users/vipul/Nova/Projects/genre_spectrum/movies_metadata.csv', low_memory=False)\n", - "device = torch.device('cuda' if torch.cuda.is_available() else 'cpu')\n", - "\n", - "def preprocess_data(movie_data_chunk):\n", - " tagged_docs = []\n", - " valid_indices = []\n", - " movie_info = []\n", - "\n", - " # Wrap your loop with tqdm\n", - " for i, row in tqdm(movie_data_chunk.iterrows(), total=len(movie_data_chunk)):\n", - " try:\n", - " # Constructing movie text\n", - " movies_text = ''\n", - " movies_text += \"Overview: \" + row['overview'] + '\\n'\n", - " genres = ', '.join([genre['name'] for genre in eval(row['genres'])])\n", - " movies_text += \"Overview: \" + row['overview'] + '\\n'\n", - " movies_text += \"Genres: \" + genres + '\\n'\n", - " movies_text += \"Title: \" + row['title'] + '\\n'\n", - " tagged_docs.append(TaggedDocument(words=word_tokenize(movies_text.lower()), tags=[str(i)]))\n", - " valid_indices.append(i)\n", - " movie_info.append((row['title'], genres))\n", - " except Exception as e:\n", - " continue\n", - "\n", - " return tagged_docs, valid_indices, movie_info\n", - "\n", - "def train_doc2vec_model(tagged_data, num_epochs=20):\n", - " # Initialize Doc2Vec model\n", - " doc2vec_model = Doc2Vec(vector_size=100, min_count=2, epochs=num_epochs)\n", - " doc2vec_model.build_vocab(tqdm(tagged_data, desc=\"Building Vocabulary\"))\n", - " for epoch in range(num_epochs):\n", - " doc2vec_model.train(tqdm(tagged_data, desc=f\"Epoch {epoch+1}\"), total_examples=doc2vec_model.corpus_count, epochs=doc2vec_model.epochs)\n", - "\n", - " return doc2vec_model\n", - "\n", - "# Preprocess data and extract genres for the first 1000 movies\n", - "chunk_size = 1000\n", - "tagged_data = []\n", - "valid_indices = []\n", - "movie_info = []\n", - "for chunk_start in range(0, len(movie_data), chunk_size):\n", - " movie_data_chunk = movie_data.iloc[chunk_start:chunk_start+chunk_size]\n", - " chunk_tagged_data, chunk_valid_indices, chunk_movie_info = preprocess_data(movie_data_chunk)\n", - " tagged_data.extend(chunk_tagged_data)\n", - " valid_indices.extend(chunk_valid_indices)\n", - " movie_info.extend(chunk_movie_info)\n", - "\n", - "doc2vec_model = train_doc2vec_model(tagged_data)" - ] - }, - { - "cell_type": "markdown", - "metadata": { - "id": "VryHT1zVuEp0" - }, - "source": [ - "### Training a Neural Network for the Genre Classification Task" - ] - }, - { - "cell_type": "code", - "execution_count": null, - "metadata": { - "id": "3pVNy2UKt5lu" - }, - "outputs": [], - "source": [ - "# Extract genre labels for the valid indices\n", - "genres_list = []\n", - "for i in valid_indices:\n", - " row = movie_data.loc[i]\n", - " genres = [genre['name'] for genre in eval(row['genres'])]\n", - " genres_list.append(genres)\n", - "\n", - "mlb = MultiLabelBinarizer()\n", - "genre_labels = mlb.fit_transform(genres_list)\n", - "\n", - "embeddings = []\n", - "for i in valid_indices:\n", - " embeddings.append(doc2vec_model.dv[str(i)])\n", - "X_train, X_test, y_train, y_test = train_test_split(embeddings, genre_labels, test_size=0.2, random_state=42)\n", - "\n", - "X_train_np = np.array(X_train, dtype=np.float32)\n", - "y_train_np = np.array(y_train, dtype=np.float32)\n", - "X_test_np = np.array(X_test, dtype=np.float32)\n", - "y_test_np = np.array(y_test, dtype=np.float32)\n", - "\n", - "X_train_tensor = torch.tensor(X_train_np)\n", - "y_train_tensor = torch.tensor(y_train_np)\n", - "X_test_tensor = torch.tensor(X_test_np)\n", - "y_test_tensor = torch.tensor(y_test_np)\n", - "\n", - "class GenreClassifier(nn.Module):\n", - " def __init__(self, input_size, output_size):\n", - " super(GenreClassifier, self).__init__()\n", - " self.fc1 = nn.Linear(input_size, 512)\n", - " self.bn1 = nn.BatchNorm1d(512)\n", - " self.fc2 = nn.Linear(512, 256)\n", - " self.bn2 = nn.BatchNorm1d(256)\n", - " self.fc3 = nn.Linear(256, 128)\n", - " self.bn3 = nn.BatchNorm1d(128)\n", - " self.fc4 = nn.Linear(128, output_size)\n", - " self.relu = nn.ReLU()\n", - " self.dropout = nn.Dropout(p=0.2) # Adjust the dropout rate as needed\n", - "\n", - " def forward(self, x):\n", - " x = self.fc1(x)\n", - " x = self.bn1(x)\n", - " x = self.relu(x)\n", - " x = self.dropout(x)\n", - " x = self.fc2(x)\n", - " x = self.bn2(x)\n", - " x = self.relu(x)\n", - " x = self.dropout(x)\n", - " x = self.fc3(x)\n", - " x = self.bn3(x)\n", - " x = self.relu(x)\n", - " x = self.dropout(x)\n", - " x = self.fc4(x)\n", - " return x\n", - "\n", - "# Move model to the selected device\n", - "model = GenreClassifier(input_size=100, output_size=len(mlb.classes_)).to(device)\n", - "\n", - "# Define loss function and optimizer\n", - "criterion = nn.BCEWithLogitsLoss()\n", - "optimizer = optim.Adam(model.parameters(), lr=0.001)\n", - "\n", - "# Training loop\n", - "epochs = 50\n", - "batch_size = 64\n", - "\n", - "train_dataset = TensorDataset(X_train_tensor.to(device), y_train_tensor.to(device))\n", - "train_loader = DataLoader(train_dataset, batch_size=batch_size, shuffle=True)\n", - "\n", - "for epoch in range(epochs):\n", - " model.train()\n", - " running_loss = 0.0\n", - " for inputs, labels in train_loader:\n", - " inputs, labels = inputs.to(device), labels.to(device) # Move data to device\n", - " optimizer.zero_grad()\n", - " outputs = model(inputs)\n", - " loss = criterion(outputs, labels)\n", - " loss.backward()\n", - " optimizer.step()\n", - " running_loss += loss.item() * inputs.size(0)\n", - " epoch_loss = running_loss / len(train_loader.dataset)\n", - " print(f'Epoch [{epoch + 1}/{epochs}], Loss: {epoch_loss:.4f}')" - ] - }, - { - "cell_type": "markdown", - "metadata": { - "id": "yV8lTDYIubEQ" - }, - "source": [ - "### Testing the `model` to see if our model is able to predict the genres for the movies from the test dataset" - ] - }, - { - "cell_type": "code", - "execution_count": null, - "metadata": { - "id": "73D3aqdJuct8" - }, - "outputs": [], - "source": [ - "from sklearn.metrics import f1_score\n", - "\n", - "model.eval()\n", - "with torch.no_grad():\n", - " X_test_tensor, y_test_tensor = X_test_tensor.to(device), y_test_tensor.to(device) # Move test data to device\n", - " outputs = model(X_test_tensor)\n", - " test_loss = criterion(outputs, y_test_tensor)\n", - " print(f'Test Loss: {test_loss.item():.4f}')\n", - "\n", - "\n", - "thresholds = [0.1] * len(mlb.classes_)\n", - "thresholds_tensor = torch.tensor(thresholds, device=device).unsqueeze(0)\n", - "\n", - "# Convert the outputs to binary predictions using varying thresholds\n", - "predicted_labels = (outputs > thresholds_tensor).cpu().numpy()\n", - "\n", - "# Convert binary predictions and actual labels to multi-label format\n", - "predicted_multilabels = mlb.inverse_transform(predicted_labels)\n", - "actual_multilabels = mlb.inverse_transform(y_test_np)\n", - "\n", - "# Print the Predicted and Actual Labels for each movie\n", - "for i, (predicted, actual) in enumerate(zip(predicted_multilabels, actual_multilabels)):\n", - " print(f'Movie {i+1}:')\n", - " print(f' Predicted Labels: {predicted}')\n", - " print(f' Actual Labels: {actual}')\n", - "\n", - "\n", - "# Compute F1-score\n", - "f1 = f1_score(y_test_np, predicted_labels, average='micro')\n", - "print(f'F1-score: {f1:.4f}')\n", - "\n", - "# Saving the trained model\n", - "torch.save(model.state_dict(), 'trained_model.pth')" - ] - }, - { - "cell_type": "markdown", - "metadata": { - "id": "kZrHpMm4un0G" - }, - "source": [ - "### Storing the Doc2Vec Embeddings into LanceDB VectorDatabase" - ] - }, - { - "cell_type": "code", - "execution_count": null, - "metadata": { - "id": "BTTNb9irrY4h" - }, - "outputs": [], - "source": [ - "import lancedb\n", - "import numpy as np\n", - "import pandas as pd\n", - "\n", - "data = []\n", - "\n", - "for i in valid_indices:\n", - " embedding = doc2vec_model.dv[str(i)]\n", - " title, genres = movie_info[valid_indices.index(i)]\n", - " data.append({\"title\": title, \"genres\": genres, \"vector\": embedding.tolist()})\n", - "\n", - "db = lancedb.connect(\".db\")\n", - "tbl = db.create_table(\"doc2vec_embeddings\", data, mode=\"Overwrite\")\n", - "db[\"doc2vec_embeddings\"].head()" - ] - }, - { - "cell_type": "code", - "execution_count": null, - "metadata": { - "id": "ciUFn7uQrY4i" - }, - "outputs": [], - "source": [ - "def get_recommendations(title):\n", - " pd_data = pd.DataFrame(data)\n", - " result = (\n", - " tbl.search(pd_data[pd_data[\"title\"] == title][\"vector\"].values[0]).metric(\"cosine\")\n", - " .limit(10)\n", - " .to_pandas()\n", - " )\n", - " return result[[\"title\"]]" - ] - }, + "cells": [ + { + "cell_type": "markdown", + "metadata": { + "id": "K45xhdPRsZJV" + }, + "source": [ + "# Movie Recommendation System using Doc2vec Embeddings and Vector DB" + ] + }, + { + "cell_type": "markdown", + "metadata": { + "id": "XUj6NXD0sdgf" + }, + "source": [ + "This Colab notebook aims to illustrate the process of creating a recommendation system using embeddings and a Vector DB.\n", + "\n", + "This approach involves combining the various movie genres or characteristics of a movie to form Doc2Vec embeddings, which offer a comprehensive portrayal of the movie content.\n", + "\n", + "These embeddings serve dual purposes: they can either be directly inputted into a classification model for genre classification or stored in a VectorDB. By storing embeddings in a VectorDB, efficient retrieval and query search for recommendations become possible at a later stage.\n" + ] + }, + { + "cell_type": "markdown", + "metadata": { + "id": "qEa74a_Wtpc7" + }, + "source": [ + "### Installing the relevant dependencies\n" + ] + }, + { + "cell_type": "code", + "execution_count": null, + "metadata": { + "id": "hyde90IntuFi" + }, + "outputs": [], + "source": [ + "!pip install torch scikit-learn lancedb nltk gensim lancedb scipy==1.12 kaggle" + ] + }, + { + "cell_type": "markdown", + "metadata": { + "id": "shPjHTZbtxTh" + }, + "source": [ + "## Kaggle Configuration and Data Needs\n", + "\n", + "We are using a movies metadata data which is being uploaded on the Kaggle. To download the dataset and use it for our recommendation system, we will need a `kaggle.json` file containing our creds.\n", + "\n", + "You can download the `kaggle.json` file from your Kaggle account settings. Follow these steps and make your life easy.\n", + "\n", + "1. Go to Kaggle and log in to your account.\n", + "2. Navigate to Your Account Settings and click on your profile picture in the top right corner of the page, Now From the dropdown menu, select `Account`.\n", + "3. Scroll down to the `API` section, Click on `Create New API Token`. This will download a file named kaggle.json to your computer.\n", + "\n", + "Once you have the `kaggle.json` file, you need to upload it here on colab data space. After uploading the `kaggle.json` file, run the following code to set up the credentials and download the dataset in `data` directory" + ] + }, + { + "cell_type": "code", + "execution_count": null, + "metadata": { + "id": "6Tl2qzgKsWtF" + }, + "outputs": [], + "source": [ + "import json\n", + "import os\n", + "\n", + "# Assuming kaggle.json is uploaded to the current directory\n", + "with open(\"kaggle.json\") as f:\n", + " kaggle_credentials = json.load(f)\n", + "\n", + "os.environ[\"KAGGLE_USERNAME\"] = kaggle_credentials[\"username\"]\n", + "os.environ[\"KAGGLE_KEY\"] = kaggle_credentials[\"key\"]" + ] + }, + { + "cell_type": "code", + "execution_count": null, + "metadata": { + "id": "8va-0of3sU0x" + }, + "outputs": [], + "source": [ + "from kaggle.api.kaggle_api_extended import KaggleApi\n", + "\n", + "# Initialize the Kaggle API\n", + "api = KaggleApi()\n", + "api.authenticate()\n", + "\n", + "# Specify the dataset you want to download\n", + "dataset = \"rounakbanik/the-movies-dataset\"\n", + "destination = \"data/\"\n", + "\n", + "# Create the destination directory if it doesn't exist\n", + "if not os.path.exists(destination):\n", + " os.makedirs(destination)\n", + "\n", + "# Download the dataset\n", + "api.dataset_download_files(dataset, path=destination, unzip=True)\n", + "\n", + "print(f\"Dataset {dataset} downloaded to {destination}\")" + ] + }, + { + "cell_type": "code", + "execution_count": null, + "metadata": { + "id": "hBYzad3lrY4e", + "outputId": "5a8f7983-80be-47e0-aa9c-ae4e10495c1e" + }, + "outputs": [ { - "cell_type": "markdown", - "metadata": { - "id": "8Kz-JGsTuwmk" - }, - "source": [ - "### D-Day : Let's generate some recommendations" - ] - }, + "name": "stderr", + "output_type": "stream", + "text": [ + "100%|██████████| 1000/1000 [00:00<00:00, 5050.83it/s]\n", + "100%|██████████| 1000/1000 [00:00<00:00, 5161.29it/s]\n", + "100%|██████████| 1000/1000 [00:00<00:00, 5006.18it/s]\n", + "100%|██████████| 1000/1000 [00:00<00:00, 5222.83it/s]\n", + "100%|██████████| 1000/1000 [00:00<00:00, 5216.24it/s]\n", + "100%|██████████| 1000/1000 [00:00<00:00, 5171.35it/s]\n", + "100%|██████████| 1000/1000 [00:00<00:00, 5109.78it/s]\n", + "100%|██████████| 1000/1000 [00:00<00:00, 5222.42it/s]\n", + "100%|██████████| 1000/1000 [00:00<00:00, 5133.39it/s]\n", + "100%|██████████| 1000/1000 [00:00<00:00, 5024.74it/s]\n", + "100%|██████████| 1000/1000 [00:00<00:00, 5117.18it/s]\n", + "100%|██████████| 1000/1000 [00:00<00:00, 4963.78it/s]\n", + "100%|██████████| 1000/1000 [00:00<00:00, 5405.55it/s]\n", + "100%|██████████| 1000/1000 [00:00<00:00, 5369.51it/s]\n", + "100%|██████████| 1000/1000 [00:00<00:00, 5349.33it/s]\n", + "100%|██████████| 1000/1000 [00:00<00:00, 5374.53it/s]\n", + "100%|██████████| 1000/1000 [00:00<00:00, 5194.32it/s]\n", + "100%|██████████| 1000/1000 [00:00<00:00, 5296.75it/s]\n", + "100%|██████████| 1000/1000 [00:00<00:00, 5204.32it/s]\n", + "100%|██████████| 1000/1000 [00:00<00:00, 5309.43it/s]\n", + "100%|██████████| 1000/1000 [00:00<00:00, 5333.12it/s]\n", + "100%|██████████| 1000/1000 [00:00<00:00, 5289.35it/s]\n", + "100%|██████████| 1000/1000 [00:00<00:00, 5317.42it/s]\n", + "100%|██████████| 1000/1000 [00:00<00:00, 5322.46it/s]\n", + "100%|██████████| 1000/1000 [00:00<00:00, 5378.43it/s]\n", + "100%|██████████| 1000/1000 [00:00<00:00, 5488.32it/s]\n", + "100%|██████████| 1000/1000 [00:00<00:00, 5546.43it/s]\n", + "100%|██████████| 1000/1000 [00:00<00:00, 2502.38it/s]\n", + "100%|██████████| 1000/1000 [00:00<00:00, 5369.91it/s]\n", + "100%|██████████| 1000/1000 [00:00<00:00, 4354.99it/s]\n", + "100%|██████████| 1000/1000 [00:00<00:00, 5193.60it/s]\n", + "100%|██████████| 1000/1000 [00:00<00:00, 5536.27it/s]\n", + "100%|██████████| 1000/1000 [00:00<00:00, 3476.56it/s]\n", + "100%|██████████| 1000/1000 [00:00<00:00, 4819.07it/s]\n", + "100%|██████████| 1000/1000 [00:00<00:00, 4500.37it/s]\n", + "100%|██████████| 1000/1000 [00:00<00:00, 5184.11it/s]\n", + "100%|██████████| 1000/1000 [00:00<00:00, 5098.14it/s]\n", + "100%|██████████| 1000/1000 [00:00<00:00, 5523.73it/s]\n", + "100%|██████████| 1000/1000 [00:00<00:00, 4655.12it/s]\n", + "100%|██████████| 1000/1000 [00:00<00:00, 5113.63it/s]\n", + "100%|██████████| 1000/1000 [00:00<00:00, 5336.63it/s]\n", + "100%|██████████| 1000/1000 [00:00<00:00, 5564.83it/s]\n", + "100%|██████████| 1000/1000 [00:00<00:00, 5310.91it/s]\n", + "100%|██████████| 1000/1000 [00:00<00:00, 5533.46it/s]\n", + "100%|██████████| 1000/1000 [00:00<00:00, 4255.41it/s]\n", + "100%|██████████| 466/466 [00:00<00:00, 5617.03it/s]\n", + "Building Vocabulary: 100%|██████████| 44506/44506 [00:00<00:00, 104121.48it/s]\n", + "Epoch 1: 100%|██████████| 44506/44506 [00:02<00:00, 20444.80it/s]\n", + "Epoch 2: 100%|██████████| 44506/44506 [00:02<00:00, 20700.43it/s]\n", + "Epoch 3: 100%|██████████| 44506/44506 [00:02<00:00, 20831.06it/s]\n", + "Epoch 4: 100%|██████████| 44506/44506 [00:02<00:00, 20885.78it/s]\n", + "Epoch 5: 100%|██████████| 44506/44506 [00:02<00:00, 19616.38it/s]\n", + "Epoch 6: 100%|██████████| 44506/44506 [00:02<00:00, 19634.24it/s]\n", + "Epoch 7: 100%|██████████| 44506/44506 [00:02<00:00, 20579.08it/s]\n", + "Epoch 8: 100%|██████████| 44506/44506 [00:02<00:00, 20727.00it/s]\n", + "Epoch 9: 100%|██████████| 44506/44506 [00:02<00:00, 21242.19it/s]\n", + "Epoch 10: 100%|██████████| 44506/44506 [00:02<00:00, 18476.39it/s]\n", + "Epoch 11: 100%|██████████| 44506/44506 [00:02<00:00, 21169.07it/s]\n", + "Epoch 12: 100%|██████████| 44506/44506 [00:02<00:00, 20967.64it/s]\n", + "Epoch 13: 100%|██████████| 44506/44506 [00:02<00:00, 20192.34it/s]\n", + "Epoch 14: 100%|██████████| 44506/44506 [00:02<00:00, 18910.62it/s]\n", + "Epoch 15: 100%|██████████| 44506/44506 [00:02<00:00, 20810.41it/s]\n", + "Epoch 16: 100%|██████████| 44506/44506 [00:02<00:00, 21361.88it/s]\n", + "Epoch 17: 100%|██████████| 44506/44506 [00:02<00:00, 18440.51it/s]\n", + "Epoch 18: 100%|██████████| 44506/44506 [00:02<00:00, 21206.01it/s]\n", + "Epoch 19: 100%|██████████| 44506/44506 [00:02<00:00, 20086.00it/s]\n", + "Epoch 20: 100%|██████████| 44506/44506 [00:02<00:00, 20943.08it/s]\n" + ] + } + ], + "source": [ + "import pandas as pd\n", + "import numpy as np\n", + "import torch\n", + "import torch.nn as nn\n", + "import torch.optim as optim\n", + "from torch.utils.data import DataLoader, TensorDataset\n", + "from gensim.models.doc2vec import Doc2Vec, TaggedDocument\n", + "from nltk.tokenize import word_tokenize\n", + "from sklearn.preprocessing import MultiLabelBinarizer\n", + "from sklearn.model_selection import train_test_split\n", + "from tqdm import tqdm\n", + "\n", + "# Read data from CSV file\n", + "movie_data = pd.read_csv(\n", + " \"/Users/vipul/Nova/Projects/genre_spectrum/movies_metadata.csv\", low_memory=False\n", + ")\n", + "device = torch.device(\"cuda\" if torch.cuda.is_available() else \"cpu\")\n", + "\n", + "\n", + "def preprocess_data(movie_data_chunk):\n", + " tagged_docs = []\n", + " valid_indices = []\n", + " movie_info = []\n", + "\n", + " # Wrap your loop with tqdm\n", + " for i, row in tqdm(movie_data_chunk.iterrows(), total=len(movie_data_chunk)):\n", + " try:\n", + " # Constructing movie text\n", + " movies_text = \"\"\n", + " movies_text += \"Overview: \" + row[\"overview\"] + \"\\n\"\n", + " genres = \", \".join([genre[\"name\"] for genre in eval(row[\"genres\"])])\n", + " movies_text += \"Overview: \" + row[\"overview\"] + \"\\n\"\n", + " movies_text += \"Genres: \" + genres + \"\\n\"\n", + " movies_text += \"Title: \" + row[\"title\"] + \"\\n\"\n", + " tagged_docs.append(\n", + " TaggedDocument(words=word_tokenize(movies_text.lower()), tags=[str(i)])\n", + " )\n", + " valid_indices.append(i)\n", + " movie_info.append((row[\"title\"], genres))\n", + " except Exception as e:\n", + " continue\n", + "\n", + " return tagged_docs, valid_indices, movie_info\n", + "\n", + "\n", + "def train_doc2vec_model(tagged_data, num_epochs=20):\n", + " # Initialize Doc2Vec model\n", + " doc2vec_model = Doc2Vec(vector_size=100, min_count=2, epochs=num_epochs)\n", + " doc2vec_model.build_vocab(tqdm(tagged_data, desc=\"Building Vocabulary\"))\n", + " for epoch in range(num_epochs):\n", + " doc2vec_model.train(\n", + " tqdm(tagged_data, desc=f\"Epoch {epoch+1}\"),\n", + " total_examples=doc2vec_model.corpus_count,\n", + " epochs=doc2vec_model.epochs,\n", + " )\n", + "\n", + " return doc2vec_model\n", + "\n", + "\n", + "# Preprocess data and extract genres for the first 1000 movies\n", + "chunk_size = 1000\n", + "tagged_data = []\n", + "valid_indices = []\n", + "movie_info = []\n", + "for chunk_start in range(0, len(movie_data), chunk_size):\n", + " movie_data_chunk = movie_data.iloc[chunk_start : chunk_start + chunk_size]\n", + " chunk_tagged_data, chunk_valid_indices, chunk_movie_info = preprocess_data(\n", + " movie_data_chunk\n", + " )\n", + " tagged_data.extend(chunk_tagged_data)\n", + " valid_indices.extend(chunk_valid_indices)\n", + " movie_info.extend(chunk_movie_info)\n", + "\n", + "doc2vec_model = train_doc2vec_model(tagged_data)" + ] + }, + { + "cell_type": "markdown", + "metadata": { + "id": "VryHT1zVuEp0" + }, + "source": [ + "### Training a Neural Network for the Genre Classification Task" + ] + }, + { + "cell_type": "code", + "execution_count": null, + "metadata": { + "id": "3pVNy2UKt5lu" + }, + "outputs": [], + "source": [ + "# Extract genre labels for the valid indices\n", + "genres_list = []\n", + "for i in valid_indices:\n", + " row = movie_data.loc[i]\n", + " genres = [genre[\"name\"] for genre in eval(row[\"genres\"])]\n", + " genres_list.append(genres)\n", + "\n", + "mlb = MultiLabelBinarizer()\n", + "genre_labels = mlb.fit_transform(genres_list)\n", + "\n", + "embeddings = []\n", + "for i in valid_indices:\n", + " embeddings.append(doc2vec_model.dv[str(i)])\n", + "X_train, X_test, y_train, y_test = train_test_split(\n", + " embeddings, genre_labels, test_size=0.2, random_state=42\n", + ")\n", + "\n", + "X_train_np = np.array(X_train, dtype=np.float32)\n", + "y_train_np = np.array(y_train, dtype=np.float32)\n", + "X_test_np = np.array(X_test, dtype=np.float32)\n", + "y_test_np = np.array(y_test, dtype=np.float32)\n", + "\n", + "X_train_tensor = torch.tensor(X_train_np)\n", + "y_train_tensor = torch.tensor(y_train_np)\n", + "X_test_tensor = torch.tensor(X_test_np)\n", + "y_test_tensor = torch.tensor(y_test_np)\n", + "\n", + "\n", + "class GenreClassifier(nn.Module):\n", + " def __init__(self, input_size, output_size):\n", + " super(GenreClassifier, self).__init__()\n", + " self.fc1 = nn.Linear(input_size, 512)\n", + " self.bn1 = nn.BatchNorm1d(512)\n", + " self.fc2 = nn.Linear(512, 256)\n", + " self.bn2 = nn.BatchNorm1d(256)\n", + " self.fc3 = nn.Linear(256, 128)\n", + " self.bn3 = nn.BatchNorm1d(128)\n", + " self.fc4 = nn.Linear(128, output_size)\n", + " self.relu = nn.ReLU()\n", + " self.dropout = nn.Dropout(p=0.2) # Adjust the dropout rate as needed\n", + "\n", + " def forward(self, x):\n", + " x = self.fc1(x)\n", + " x = self.bn1(x)\n", + " x = self.relu(x)\n", + " x = self.dropout(x)\n", + " x = self.fc2(x)\n", + " x = self.bn2(x)\n", + " x = self.relu(x)\n", + " x = self.dropout(x)\n", + " x = self.fc3(x)\n", + " x = self.bn3(x)\n", + " x = self.relu(x)\n", + " x = self.dropout(x)\n", + " x = self.fc4(x)\n", + " return x\n", + "\n", + "\n", + "# Move model to the selected device\n", + "model = GenreClassifier(input_size=100, output_size=len(mlb.classes_)).to(device)\n", + "\n", + "# Define loss function and optimizer\n", + "criterion = nn.BCEWithLogitsLoss()\n", + "optimizer = optim.Adam(model.parameters(), lr=0.001)\n", + "\n", + "# Training loop\n", + "epochs = 50\n", + "batch_size = 64\n", + "\n", + "train_dataset = TensorDataset(X_train_tensor.to(device), y_train_tensor.to(device))\n", + "train_loader = DataLoader(train_dataset, batch_size=batch_size, shuffle=True)\n", + "\n", + "for epoch in range(epochs):\n", + " model.train()\n", + " running_loss = 0.0\n", + " for inputs, labels in train_loader:\n", + " inputs, labels = inputs.to(device), labels.to(device) # Move data to device\n", + " optimizer.zero_grad()\n", + " outputs = model(inputs)\n", + " loss = criterion(outputs, labels)\n", + " loss.backward()\n", + " optimizer.step()\n", + " running_loss += loss.item() * inputs.size(0)\n", + " epoch_loss = running_loss / len(train_loader.dataset)\n", + " print(f\"Epoch [{epoch + 1}/{epochs}], Loss: {epoch_loss:.4f}\")" + ] + }, + { + "cell_type": "markdown", + "metadata": { + "id": "yV8lTDYIubEQ" + }, + "source": [ + "### Testing the `model` to see if our model is able to predict the genres for the movies from the test dataset" + ] + }, + { + "cell_type": "code", + "execution_count": null, + "metadata": { + "id": "73D3aqdJuct8" + }, + "outputs": [], + "source": [ + "from sklearn.metrics import f1_score\n", + "\n", + "model.eval()\n", + "with torch.no_grad():\n", + " X_test_tensor, y_test_tensor = X_test_tensor.to(device), y_test_tensor.to(\n", + " device\n", + " ) # Move test data to device\n", + " outputs = model(X_test_tensor)\n", + " test_loss = criterion(outputs, y_test_tensor)\n", + " print(f\"Test Loss: {test_loss.item():.4f}\")\n", + "\n", + "\n", + "thresholds = [0.1] * len(mlb.classes_)\n", + "thresholds_tensor = torch.tensor(thresholds, device=device).unsqueeze(0)\n", + "\n", + "# Convert the outputs to binary predictions using varying thresholds\n", + "predicted_labels = (outputs > thresholds_tensor).cpu().numpy()\n", + "\n", + "# Convert binary predictions and actual labels to multi-label format\n", + "predicted_multilabels = mlb.inverse_transform(predicted_labels)\n", + "actual_multilabels = mlb.inverse_transform(y_test_np)\n", + "\n", + "# Print the Predicted and Actual Labels for each movie\n", + "for i, (predicted, actual) in enumerate(zip(predicted_multilabels, actual_multilabels)):\n", + " print(f\"Movie {i+1}:\")\n", + " print(f\" Predicted Labels: {predicted}\")\n", + " print(f\" Actual Labels: {actual}\")\n", + "\n", + "\n", + "# Compute F1-score\n", + "f1 = f1_score(y_test_np, predicted_labels, average=\"micro\")\n", + "print(f\"F1-score: {f1:.4f}\")\n", + "\n", + "# Saving the trained model\n", + "torch.save(model.state_dict(), \"trained_model.pth\")" + ] + }, + { + "cell_type": "markdown", + "metadata": { + "id": "kZrHpMm4un0G" + }, + "source": [ + "### Storing the Doc2Vec Embeddings into LanceDB VectorDatabase" + ] + }, + { + "cell_type": "code", + "execution_count": null, + "metadata": { + "id": "BTTNb9irrY4h" + }, + "outputs": [], + "source": [ + "import lancedb\n", + "import numpy as np\n", + "import pandas as pd\n", + "\n", + "data = []\n", + "\n", + "for i in valid_indices:\n", + " embedding = doc2vec_model.dv[str(i)]\n", + " title, genres = movie_info[valid_indices.index(i)]\n", + " data.append({\"title\": title, \"genres\": genres, \"vector\": embedding.tolist()})\n", + "\n", + "db = lancedb.connect(\".db\")\n", + "tbl = db.create_table(\"doc2vec_embeddings\", data, mode=\"Overwrite\")\n", + "db[\"doc2vec_embeddings\"].head()" + ] + }, + { + "cell_type": "code", + "execution_count": null, + "metadata": { + "id": "ciUFn7uQrY4i" + }, + "outputs": [], + "source": [ + "def get_recommendations(title):\n", + " pd_data = pd.DataFrame(data)\n", + " result = (\n", + " tbl.search(pd_data[pd_data[\"title\"] == title][\"vector\"].values[0])\n", + " .metric(\"cosine\")\n", + " .limit(10)\n", + " .to_pandas()\n", + " )\n", + " return result[[\"title\"]]" + ] + }, + { + "cell_type": "markdown", + "metadata": { + "id": "8Kz-JGsTuwmk" + }, + "source": [ + "### D-Day : Let's generate some recommendations" + ] + }, + { + "cell_type": "code", + "execution_count": null, + "metadata": { + "id": "uw_El12JrY4j", + "outputId": "c245bab5-7966-4fd1-ec72-37f708c3b570" + }, + "outputs": [ { - "cell_type": "code", - "execution_count": null, - "metadata": { - "id": "uw_El12JrY4j", - "outputId": "c245bab5-7966-4fd1-ec72-37f708c3b570" - }, - "outputs": [ - { - "data": { - "text/html": [ - "
\n", - "\n", - "\n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - "
title
0Vertical Limit
1Demons of War
2Fear and Desire
3Escape from Sobibor
4Last Girl Standing
5K2: Siren of the Himalayas
6Ghost Ship
7Camp Massacre
8Captain Nemo and the Underwater City
9Seas Beneath
\n", - "
" - ], - "text/plain": [ - " title\n", - "0 Vertical Limit\n", - "1 Demons of War\n", - "2 Fear and Desire\n", - "3 Escape from Sobibor\n", - "4 Last Girl Standing\n", - "5 K2: Siren of the Himalayas\n", - "6 Ghost Ship\n", - "7 Camp Massacre\n", - "8 Captain Nemo and the Underwater City\n", - "9 Seas Beneath" - ] - }, - "execution_count": 20, - "metadata": {}, - "output_type": "execute_result" - } + "data": { + "text/html": [ + "
\n", + "\n", + "\n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + "
title
0Vertical Limit
1Demons of War
2Fear and Desire
3Escape from Sobibor
4Last Girl Standing
5K2: Siren of the Himalayas
6Ghost Ship
7Camp Massacre
8Captain Nemo and the Underwater City
9Seas Beneath
\n", + "
" ], - "source": [ - "get_recommendations(\"Vertical Limit\")" + "text/plain": [ + " title\n", + "0 Vertical Limit\n", + "1 Demons of War\n", + "2 Fear and Desire\n", + "3 Escape from Sobibor\n", + "4 Last Girl Standing\n", + "5 K2: Siren of the Himalayas\n", + "6 Ghost Ship\n", + "7 Camp Massacre\n", + "8 Captain Nemo and the Underwater City\n", + "9 Seas Beneath" ] + }, + "execution_count": 20, + "metadata": {}, + "output_type": "execute_result" } - ], - "metadata": { - "colab": { - "provenance": [] - }, - "kernelspec": { - "display_name": "env", - "language": "python", - "name": "python3" - }, - "language_info": { - "codemirror_mode": { - "name": "ipython", - "version": 3 - }, - "file_extension": ".py", - "mimetype": "text/x-python", - "name": "python", - "nbconvert_exporter": "python", - "pygments_lexer": "ipython3", - "version": "3.12.3" - } + ], + "source": [ + "get_recommendations(\"Vertical Limit\")" + ] + } + ], + "metadata": { + "colab": { + "provenance": [] + }, + "kernelspec": { + "display_name": "env", + "language": "python", + "name": "python3" }, - "nbformat": 4, - "nbformat_minor": 0 + "language_info": { + "codemirror_mode": { + "name": "ipython", + "version": 3 + }, + "file_extension": ".py", + "mimetype": "text/x-python", + "name": "python", + "nbconvert_exporter": "python", + "pygments_lexer": "ipython3", + "version": "3.12.3" + } + }, + "nbformat": 4, + "nbformat_minor": 0 }