@@ -1829,7 +1829,7 @@ def _reflow_param_docstring(docstring, has_first_line=True, width=75):
18291829of the wavelet is determined by the ``sigma`` parameter, which gives the
18301830standard deviation of the wavelet's Gaussian envelope (our wavelets extend to
18311831±5 standard deviations to ensure values very close to zero at the endpoints).
1832- Some authors (e.g., :footcite:`Cohen2019`) recommend specifying and reporting
1832+ Some authors (e.g., :footcite:t: `Cohen2019`) recommend specifying and reporting
18331833wavelet duration in terms of the full-width half-maximum (FWHM) of the
18341834wavelet's Gaussian envelope. The FWHM is related to ``sigma`` by the following
18351835identity: :math:`\mathrm{FWHM} = \sigma \times 2 \sqrt{2 \ln{2}}` (or the
@@ -1852,7 +1852,7 @@ def _reflow_param_docstring(docstring, has_first_line=True, width=75):
18521852frequency in ``freqs``. If you want different FWHM values at each frequency,
18531853do the same computation with ``desired_fwhm`` as an array of the same shape as
18541854``freqs``.
1855- """ # noqa E501
1855+ """
18561856
18571857# %%
18581858# G
@@ -2344,7 +2344,7 @@ def _reflow_param_docstring(docstring, has_first_line=True, width=75):
23442344] = """
23452345label_tc : array | list (or generator) of array, shape (n_labels[, n_orient], n_times)
23462346 Extracted time course for each label and source estimate.
2347- """ # noqa: E501
2347+ """
23482348
23492349docdict [
23502350 "labels_eltc"
@@ -2668,10 +2668,9 @@ def _reflow_param_docstring(docstring, has_first_line=True, width=75):
26682668"""
26692669
26702670docdict [
2671- "morlet_notes "
2671+ "morlet_reference "
26722672] = """
2673- The Morlet wavelets follow the formulation in
2674- :footcite:`Tallon-BaudryEtAl1997`.
2673+ The Morlet wavelets follow the formulation in :footcite:t:`Tallon-BaudryEtAl1997`.
26752674"""
26762675
26772676docdict [
@@ -4178,7 +4177,7 @@ def _reflow_param_docstring(docstring, has_first_line=True, width=75):
41784177
41794178 .. versionadded:: 0.20
41804179 .. versionchanged:: 1.1 Added ``'eeglab'`` option.
4181- """ # noqa E501
4180+ """
41824181
41834182docdict [
41844183 "split_naming"
@@ -4438,8 +4437,8 @@ def _reflow_param_docstring(docstring, has_first_line=True, width=75):
44384437"""
44394438
44404439docdict [
4441- "temporal-window_tfr_notes "
4442- ] = r """
4440+ "temporal_window_tfr_intro "
4441+ ] = """
44434442In spectrotemporal analysis (as with traditional fourier methods),
44444443the temporal and spectral resolution are interrelated: longer temporal windows
44454444allow more precise frequency estimates; shorter temporal windows "smear"
@@ -4457,18 +4456,43 @@ def _reflow_param_docstring(docstring, has_first_line=True, width=75):
44574456smoothing increases with frequency.*
44584457Source: `FieldTrip tutorial: Time-frequency analysis using Hanning window,
44594458multitapers and wavelets <https://www.fieldtriptoolbox.org/tutorial/timefrequencyanalysis>`_.
4459+ """ # noqa: E501
4460+
4461+ docdict [
4462+ "temporal_window_tfr_morlet_notes"
4463+ ] = r"""
4464+ In MNE-Python, the length of the Morlet wavelet is affected by the arguments
4465+ ``freqs`` and ``n_cycles``, which define the frequencies of interest
4466+ and the number of cycles, respectively. For the time-frequency representation,
4467+ the length of the wavelet is defined such that both tails of
4468+ the wavelet extend five standard deviations from the midpoint of its Gaussian
4469+ envelope and that there is a sample at time zero.
4470+
4471+ The length of the wavelet is thus :math:`10\times\mathtt{sfreq}\cdot\sigma-1`,
4472+ which is equal to :math:`\frac{5}{\pi} \cdot \frac{\mathtt{n\_cycles} \cdot
4473+ \mathtt{sfreq}}{\mathtt{freqs}} - 1`, where
4474+ :math:`\sigma = \frac{\mathtt{n\_cycles}}{2\pi f}` corresponds to the standard
4475+ deviation of the wavelet's Gaussian envelope. Note that the length of the
4476+ wavelet must not exceed the length of your signal.
4477+
4478+ For more information on the Morlet wavelet, see :func:`mne.time_frequency.morlet`.
4479+ """
44604480
4461- In MNE-Python, the temporal window length is defined by the arguments ``freqs``
4462- and ``n_cycles``, respectively defining the frequencies of interest and the
4463- number of cycles: :math:`T = \frac{\mathtt{n\_cycles}}{\mathtt{freqs}}`
4481+ docdict [
4482+ "temporal_window_tfr_multitaper_notes"
4483+ ] = r"""
4484+ In MNE-Python, the multitaper temporal window length is defined by the arguments
4485+ ``freqs`` and ``n_cycles``, respectively defining the frequencies of interest
4486+ and the number of cycles: :math:`T = \frac{\mathtt{n\_cycles}}{\mathtt{freqs}}`
44644487
44654488A fixed number of cycles for all frequencies will yield a temporal window which
44664489decreases with frequency. For example, ``freqs=np.arange(1, 6, 2)`` and
44674490``n_cycles=2`` yields ``T=array([2., 0.7, 0.4])``.
44684491
44694492To use a temporal window with fixed length, the number of cycles has to be
44704493defined based on the frequency. For example, ``freqs=np.arange(1, 6, 2)`` and
4471- ``n_cycles=freqs / 2`` yields ``T=array([0.5, 0.5, 0.5])``.""" # noqa: E501
4494+ ``n_cycles=freqs / 2`` yields ``T=array([0.5, 0.5, 0.5])``.
4495+ """
44724496
44734497_theme = """\
44744498 theme : str | path-like
0 commit comments