-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy path0100_rawdata_svm.py
41 lines (35 loc) · 1.18 KB
/
0100_rawdata_svm.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
# -*- coding:utf-8 -*-
"""
@author: Songgx
@name: 0100_rawdata_svm.py
@time: 2016/11/25 12:43
"""
from __future__ import print_function
import data.load_raw_data_file_to_array as f2a
import numpy as np
from sklearn.model_selection import train_test_split
from sklearn.svm import SVC
import time
num = 100 # 每种风格音乐文件个数
tempArray = []
y = []
for genre in range(10): #共10种风格
# ['blues', 'classical', 'country', 'disco', 'hiphop', 'jazz', 'metal', 'pop', 'reggae', 'rock']
# 分别对应[0-9]
for i in range(num):
y.append(genre)
labels = np.array(y)
t1 = time.time()
data = f2a.LoadRawDataFileToArray().load("data/merge/allRawData.txt")
t2 = time.time()
print ("Time cost: %f s." %(t2-t1))
print ("start training")
t3 = time.time()
data_train, data_test, label_train, label_test = train_test_split(data, labels, test_size=0.2)
clf = SVC(C=16, cache_size=200, class_weight=None, coef0=0.0, degree=3,
gamma=0.00024, kernel='rbf', max_iter=-1, probability=False,
random_state=None, shrinking=True, tol=0.001, verbose=False)
clf.fit(data_train, label_train)
print (clf.score(data_test, label_test))
t4 = time.time()
print ("Time cost: %f s." %(t4-t3))