Skip to content

Commit 99e9aba

Browse files
author
GuangxiaoSong
committed
future
1 parent 7678c54 commit 99e9aba

17 files changed

+59
-40
lines changed

0000_preparing_data.py

+2-2
Original file line numberDiff line numberDiff line change
@@ -5,7 +5,7 @@
55
@name: 0000_preparing_data.py
66
@time: 2016/11/27 12:20
77
"""
8-
8+
from __future__ import print_function
99
import data.load_raw_data_to_file as loader
1010
import os
1111

@@ -29,4 +29,4 @@
2929
for file in files:
3030
ld.merge_cvt_files("data/converted/"+file, "data/merge/allRawData.txt")
3131

32-
print "Finished."
32+
print ("Finished.")

0001_merge_file_line_num.py

+5-3
Original file line numberDiff line numberDiff line change
@@ -1,13 +1,15 @@
11
# -*- coding:utf-8 -*-
22

3+
from __future__ import print_function
4+
35
f = open("data/merge/allRawData.txt", "r")
46
line_num = 0
57
line = f.readline()
68
str = line.split(" ")
7-
print len(str)
8-
print str[-1]
9+
print (len(str))
10+
print (str[-1])
911
for line in f:
1012
line_num += 1
11-
print "File has %i lines" % (line_num)
13+
print ("File has %i lines" % (line_num))
1214

1315
# 本机win7中有1000行数据

0100_rawdata_svm.py

+5-4
Original file line numberDiff line numberDiff line change
@@ -6,6 +6,7 @@
66
@time: 2016/11/25 12:43
77
"""
88

9+
from __future__ import print_function
910
import data.load_raw_data_file_to_array as f2a
1011
import numpy as np
1112
from sklearn.cross_validation import train_test_split
@@ -26,15 +27,15 @@
2627
t1 = time.time()
2728
data = f2a.LoadRawDataFileToArray().load("data/merge/allRawData.txt")
2829
t2 = time.time()
29-
print "Time cost: %f s." %(t2-t1)
30-
print "start training"
30+
print ("Time cost: %f s." %(t2-t1))
31+
print ("start training")
3132
t3 = time.time()
3233
data_train, data_test, label_train, label_test = train_test_split(data, labels, test_size=0.2)
3334

3435
clf = SVC(C=16, cache_size=200, class_weight=None, coef0=0.0, degree=3,
3536
gamma=0.00024, kernel='rbf', max_iter=-1, probability=False,
3637
random_state=None, shrinking=True, tol=0.001, verbose=False)
3738
clf.fit(data_train, label_train)
38-
print clf.score(data_test, label_test)
39+
print (clf.score(data_test, label_test))
3940
t4 = time.time()
40-
print "Time cost: %f s." %(t4-t3)
41+
print ("Time cost: %f s." %(t4-t3))

0200_svm.py

+2-1
Original file line numberDiff line numberDiff line change
@@ -6,6 +6,7 @@
66
@time: 2016/11/24 18:06
77
"""
88

9+
from __future__ import print_function
910
import numpy as np
1011
from sklearn.cross_validation import train_test_split
1112
from sklearn.svm import SVC
@@ -31,4 +32,4 @@
3132
gamma=0.00024, kernel='rbf', max_iter=-1, probability=False,
3233
random_state=None, shrinking=True, tol=0.001, verbose=False)
3334
clf.fit(data_train, label_train)
34-
print clf.score(data_test, label_test)
35+
print (clf.score(data_test, label_test))

0300_multi-layer_perceptron.py

+3-1
Original file line numberDiff line numberDiff line change
@@ -5,6 +5,8 @@
55
@name: 0300_multi-layer_perceptron.py
66
@time: 2016/11/24 20:35
77
"""
8+
9+
from __future__ import print_function
810
import numpy as np
911
from sklearn.neural_network import MLPClassifier
1012
from sklearn.cross_validation import train_test_split
@@ -28,4 +30,4 @@
2830
solver='sgd', tol=0.0001, validation_fraction=0.1, verbose=False,
2931
warm_start=False)
3032
clf.fit(data_train, label_train)
31-
print clf.score(data_test, label_test)
33+
print (clf.score(data_test, label_test))

0400_nearest_centroid.py

+1-1
Original file line numberDiff line numberDiff line change
@@ -23,4 +23,4 @@
2323

2424
clf = NearestCentroid(metric='euclidean', shrink_threshold=None)
2525
clf.fit(data_train, label_train)
26-
print clf.score(data_test, label_test)
26+
print (clf.score(data_test, label_test))

0500_tensorflow_hw.py

+3-1
Original file line numberDiff line numberDiff line change
@@ -1,8 +1,10 @@
11
# -*- coding:utf-8 -*-
2+
23
import tensorflow as tf
4+
from __future__ import print_function
35

46
a = tf.constant(2)
57
b = tf.constant(3)
68

79
with tf.Session() as sess:
8-
print sess.run(a+b)
10+
print (sess.run(a+b))

0503_0_tf_csv_example.py

+3-2
Original file line numberDiff line numberDiff line change
@@ -6,6 +6,7 @@
66
@time: 11/30/16 5:45 PM
77
"""
88

9+
from __future__ import print_function
910
import tensorflow as tf
1011
import numpy as np
1112

@@ -40,9 +41,9 @@ def inputPipeLine(fileNames=["data/file0.csv", "data/file1.csv"], batchSize=4, n
4041
# while not coord.should_stop():
4142
while True:
4243
example, label = sess.run([featureBatch, labelBatch])
43-
print example
44+
print (example)
4445
except tf.errors.OutOfRangeError:
45-
print 'Done reading'
46+
print ('Done reading')
4647
finally:
4748
coord.request_stop()
4849

data/0102_test_cross_validation.py

+2-1
Original file line numberDiff line numberDiff line change
@@ -6,6 +6,7 @@
66
@time: 2016/11/23 20:03
77
"""
88

9+
from __future__ import print_function
910
from sklearn import cross_validation
1011
from sklearn import datasets, svm #导入所需要的库
1112

@@ -19,7 +20,7 @@
1920
svc = svm.SVC(C=1, kernel='linear') #初始化svm分类器
2021
kfold = cross_validation.KFold(len(X_digits), n_folds=3) #初始化交叉验证对象,len(X_digits)指明有多少个样本;n_folds指代kfolds中的参数k,表示把训练集分成k份(n_folds份),本例中为3份
2122
for train, test in kfold:
22-
print svc.fit(X_digits[train], y_digits[train]).score(X_digits[test], y_digits[test])
23+
print (svc.fit(X_digits[train], y_digits[train]).score(X_digits[test], y_digits[test]))
2324
#此处train、test里有交叉验证对象中已经初始化好的3组训练样本和测试样本所需的位置标号
2425
##其实cross_validation库将上述for循环也集成进来了
2526
#cross_validation.cross_val_score(svc, X_digits, y_digits, n_jobs=-1) #n_jobs=-1代表将受用计算机上的所有cpu计算,参数cv(此例中为默认值)除了kfold选项,还可以选择StratifiedKFold等,如果cv是一个int数字的话,并且如果提供了raw target参数,那么就代表使用StratifiedKFold分类方式,如果没有提供raw target参数,那么就代表使用KFold分类方式。

data/0103_test_cv_single_file.py

+7-4
Original file line numberDiff line numberDiff line change
@@ -5,12 +5,15 @@
55
@name: 0103_test_cv_single_file.py
66
@time: 2016/11/23 20:11
77
"""
8+
9+
10+
from __future__ import print_function
811
import numpy as np
912

1013
data = np.loadtxt('data/testFeatureDataSingleFile.txt')
11-
print data
12-
print data.shape
14+
print (data)
15+
print (data.shape)
1316

1417
data1 = data.reshape((1,-1))
15-
print data1
16-
print data1.shape
18+
print (data1)
19+
print (data1.shape)

data/0104_trans_test_data.py

+3-1
Original file line numberDiff line numberDiff line change
@@ -5,6 +5,8 @@
55
@name: 0104_trans_test_data.py
66
@time: 2016/11/23 20:11
77
"""
8+
9+
from __future__ import print_function
810
import numpy as np
911

1012
data = np.loadtxt('data/testFeatureData.txt')
@@ -40,7 +42,7 @@
4042
for i in range(data.shape[0]): # 行 433
4143
tempArray.append(np.float32(data[i][j]))
4244

43-
print result.shape
45+
print (result.shape)
4446

4547
np.savetxt('data/transTestData.txt',result,fmt='%s',newline='\n')
4648

data/0105_trans_all_data.py

+2-1
Original file line numberDiff line numberDiff line change
@@ -6,6 +6,7 @@
66
@time: 2016/11/23 20:11
77
"""
88
import numpy as np
9+
from __future__ import print_function
910

1011
data = np.loadtxt('data/allFeatureData.txt')
1112
# print data
@@ -40,7 +41,7 @@
4041
for i in range(data.shape[0]): # 行 433
4142
tempArray.append(np.float32(data[i][j]))
4243

43-
print result.shape
44+
print (result.shape)
4445

4546
np.savetxt('data/transAllData.txt',result,fmt='%s',newline='\n')
4647

data/0106_label_the_data.py

+2-2
Original file line numberDiff line numberDiff line change
@@ -9,7 +9,7 @@
99
打散数据
1010
http://friskit.me/2014/10/22/shuffle-train-data-in-numpy/
1111
"""
12-
12+
from __future__ import print_function
1313
import numpy as np
1414

1515
data = np.loadtxt('transAllData.txt')
@@ -20,6 +20,6 @@
2020
for i in range(num):
2121
y.append(genre)
2222
labels = np.array(y)
23-
print labels
23+
print (labels)
2424

2525

data/0109_train_test_spilt_test.py

+8-8
Original file line numberDiff line numberDiff line change
@@ -5,19 +5,19 @@
55
@name: 0109_train_test_spilt_test.py
66
@time: 2016/11/24 17:23
77
"""
8-
8+
from __future__ import print_function
99
from sklearn.cross_validation import train_test_split
1010
import numpy as np
1111
data = np.reshape(np.random.randn(20),(10,2)) # 10 training examples
1212
labels = np.random.randint(2, size=10) # 10 labels
1313
x1, x2, y1, y2 = train_test_split(data, labels, test_size=0.2)
1414

15-
print data
16-
print labels
15+
print (data)
16+
print (labels)
1717

18-
print "#################"
18+
print ("#################")
1919

20-
print x1
21-
print x2
22-
print y1
23-
print y2
20+
print (x1)
21+
print (x2)
22+
print (y1)
23+
print (y2)

data/add_class_in_each_row.py data/0200_add_class_in_each_row.py

+7-5
Original file line numberDiff line numberDiff line change
@@ -2,10 +2,12 @@
22

33
"""
44
@author: Songgx
5-
@file: add_class_in_each_row.py
5+
@file: 0200_add_class_in_each_row.py
66
@time: 11/28/16 7:20 PM
77
"""
88

9+
from __future__ import print_function
10+
911
TOTAL_ROW_NUM = 1000
1012

1113
# line 0-999
@@ -30,11 +32,11 @@
3032
line_num += 1
3133
if line_num % 100 == 0:
3234
class_num += 1
33-
print "%i / 1000 lines finished." % (line_num)
35+
print ("%i / 1000 lines finished." % (line_num))
3436
fr.close()
3537
fw.close()
3638

37-
print "Verify new file:"
39+
print ("Verify new file:")
3840

3941
'''
4042
fr1 = open("merge/raw_data.txt", "r")
@@ -44,9 +46,9 @@
4446
line_num1 = i + 1
4547
l = fr1.readline()[-10:]
4648
if (line_num1+1) % 100 == 0 or (line_num1-1) % 100 == 0 or line_num1 % 100 == 0:
47-
print "line-" + str(line_num1) + ":" + l.strip()
49+
print ("line-" + str(line_num1) + ":" + l.strip())
4850
fr1.close()
49-
print "Finished."
51+
print ("Finished.")
5052

5153

5254

data/convert_to_TFrecords.py data/0201_convert_to_TFrecords.py

+1-1
Original file line numberDiff line numberDiff line change
@@ -2,7 +2,7 @@
22

33
"""
44
@author: Songgx
5-
@file: convert_to_TFrecords.py
5+
@file: 0201_convert_to_TFrecords.py
66
@time: 12/1/16 5:07 PM
77
"""
88

data/load_raw_data_file_to_array.py

+3-2
Original file line numberDiff line numberDiff line change
@@ -6,6 +6,7 @@
66
@time: 2016/11/27 15:54
77
"""
88

9+
from __future__ import print_function
910
import numpy as np
1011
import re
1112

@@ -23,7 +24,7 @@ def load(self, path):
2324
r = []
2425
counter += 1
2526
if counter % 50 == 0:
26-
print "line %i finished." % (counter)
27+
print ("line %i finished." % (counter))
2728
for v in line.strip().split(' '):
2829
try:
2930
r.append(np.float32(v))
@@ -35,5 +36,5 @@ def load(self, path):
3536
result.append(r)
3637
f.close()
3738
del result[0]
38-
print "data shape: %i,%i" %(len(result), len(result[0]))
39+
print ("data shape: %i,%i" %(len(result), len(result[0])))
3940
return result

0 commit comments

Comments
 (0)