forked from duzhongqiang/MNIST-Pytorch
-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathmnistCPU.py
162 lines (141 loc) · 5.22 KB
/
mnistCPU.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
import torch
from torch import nn
import torchvision
from torch.utils.data import DataLoader
from torch.autograd import Variable
data_tf = torchvision.transforms.Compose(
[torchvision.transforms.ToTensor(),
torchvision.transforms.Normalize([0.5],[0.5])])
#准备训练数据
train_set = torchvision.datasets.MNIST('./data', train=True, transform=data_tf, download=True)
#准备测试数据
test_set = torchvision.datasets.MNIST('./data', train=False, transform=data_tf, download=True)
train_data = DataLoader(train_set, batch_size=64, shuffle=True) # 64
test_data = DataLoader(test_set, batch_size=128, shuffle=False) # 128
#示例网络1
class fc_net_2layer(nn.Module):
def __init__(self):
super(fc_net_2layer, self).__init__()
self.fc = nn.Sequential(
nn.Linear(28 * 28, 10),
nn.ReLU(),
nn.Linear(10, 10) #最后输出10个分类
)
def forward(self, x):
x = x.view(x.size(0), -1)
x = self.fc(x)
return x
#示例网络2
class fc_net_4layer(nn.Module):
def __init__(self):
super(fc_net_4layer, self).__init__()
self.fc = nn.Sequential(
nn.Linear(28 * 28, 400),
nn.ReLU(),
nn.Linear(400, 200),
nn.ReLU(),
nn.Linear(200, 100),
nn.ReLU(),
nn.Linear(100, 10) #最后输出10个分类
)
def forward(self, x):
x = x.view(x.size(0), -1)
x = self.fc(x)
return x
#示例网络3
class CNN(nn.Module):
def __init__(self):
super(CNN,self).__init__()
self.layer1 = nn.Sequential(
nn.Conv2d(1,16,kernel_size=3), # 16, 26 ,26
nn.BatchNorm2d(16),
nn.ReLU(inplace=True))
self.layer2 = nn.Sequential(
nn.Conv2d(16,32,kernel_size=3),# 32, 24, 24
nn.BatchNorm2d(32),
nn.ReLU(inplace=True),
nn.MaxPool2d(kernel_size=2,stride=2)) # 32, 12,12 (24-2) /2 +1
self.layer3 = nn.Sequential(
nn.Conv2d(32,64,kernel_size=3), # 64,10,10
nn.BatchNorm2d(64),
nn.ReLU(inplace=True))
self.layer4 = nn.Sequential(
nn.Conv2d(64,128,kernel_size=3), # 128,8,8
nn.BatchNorm2d(128),
nn.ReLU(inplace=True),
nn.MaxPool2d(kernel_size=2,stride=2)) # 128, 4,4
self.fc = nn.Sequential(
nn.Linear(128 * 4 * 4,1024),
nn.ReLU(inplace=True),
nn.Linear(1024,128),
nn.ReLU(inplace=True),
nn.Linear(128,10))
def forward(self,x):
x = self.layer1(x)
x = self.layer2(x)
x = self.layer3(x)
x = self.layer4(x)
x = x.view(x.size(0),-1)
x = self.fc(x)
return x
#选择示例网络
# net = fc_net_4layer()
# net = fc_net_2layer()
net = CNN()
print(net)
#设置损失函数
criterion = nn.CrossEntropyLoss()
#设置网络优化方式
optimizer = torch.optim.SGD(net.parameters(), 1e-2) #学习率0.1 0.01
losses = []
acces = []
eval_losses = []
eval_acces = []
#开始训练
for e in range(20):
train_loss = 0
train_acc = 0
net.train()
for im, label in train_data:
im = Variable(im)
label = Variable(label)
# 前向传播
out = net(im)
loss = criterion(out, label)
# 反向传播
optimizer.zero_grad()
loss.backward()
optimizer.step()
# 记录误差
train_loss += loss.item()
# 计算分类的准确率
_, pred = out.max(1)
num_correct = (pred == label).sum().item()
acc = num_correct / im.shape[0]
train_acc += acc
#print('epoch: {}, Batch Train Loss: {:.6f}, Bacth Train Acc: {:.6f}'.format(e, loss.item(), acc))
losses.append(train_loss / len(train_data))
acces.append(train_acc / len(train_data))
# 在测试集上检验效果
eval_loss = 0
eval_acc = 0
net.eval() # 将模型改为预测模式
for im, label in test_data:
im = Variable(im)
label = Variable(label)
out = net(im)
loss = criterion(out, label)
# 记录误差
eval_loss += loss.item()
# 记录准确率
_, pred = out.max(1)
num_correct = (pred == label).sum().item()
acc = num_correct / im.shape[0]
eval_acc += acc
#print('epoch: {}, Batch Evaluate Loss: {:.6f}, Bacth Evaluate Acc: {:.6f}'.format(e, loss.item(), acc))
eval_losses.append(eval_loss / len(test_data))
eval_acces.append(eval_acc / len(test_data))
print('***** One epoch has finished ******')
print('epoch: {}, Train Loss: {:.6f}, Train Acc: {:.6f}, Eval Loss: {:.6f}, Eval Acc: {:.6f}'
.format(e, train_loss / len(train_data), train_acc / len(train_data),
eval_loss / len(test_data), eval_acc / len(test_data)))