-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathmain.py
174 lines (142 loc) · 6.62 KB
/
main.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
import os
import tensorflow as tf
import pickle
import numpy as np
import itertools
# 自定义
import data_utils
import data_loader
import model_utils
from model import Model
from data_utils import load_word2vec
flags = tf.app.flags
# 训练相关的
flags.DEFINE_boolean('train', True, '是否开始训练')
flags.DEFINE_boolean('clean', True, '是否清理文件')
# 配置相关
flags.DEFINE_integer('seg_dim', 20, 'seg embedding size')
flags.DEFINE_integer('word_dim', 100, 'word embedding')
flags.DEFINE_integer('lstm_dim', 100, 'Num of hidden unis in lstm')
flags.DEFINE_string('tag_schema', 'BIOES', '编码方式')
# 训练相关
flags.DEFINE_float('clip', 5, 'Grandient clip')
flags.DEFINE_float('dropout', 0.5, 'Dropout rate')
flags.DEFINE_integer('batch_size', 120, 'batch_size')
flags.DEFINE_float('lr', 0.001, 'learning rate')
flags.DEFINE_string('optimizer', 'adam', '优化器')
flags.DEFINE_boolean('pre_emb', True, '是否使用预训练')
flags.DEFINE_integer('max_epoch', 100, '最大轮训次数')
flags.DEFINE_integer('setps_chech', 100, 'steps per checkpoint')
flags.DEFINE_string('ckpt_path', os.path.join('modelfile', 'ckpt'), '保存模型的位置')
flags.DEFINE_string('log_file', 'train.log', '训练过程中日志')
flags.DEFINE_string('map_file', 'maps.pkl', '存放字典映射及标签映射')
flags.DEFINE_string('vocab_file', 'vocab.json', '字向量')
flags.DEFINE_string('config_file', 'config_file', '配置文件')
flags.DEFINE_string('result_path', 'result', '结果路径')
flags.DEFINE_string('emb_file', os.path.join('data', 'wiki_100.utf8'), '词向量文件路径')
flags.DEFINE_string('train_file', os.path.join('data', 'ner.train'), '训练数据路径')
flags.DEFINE_string('dev_file', os.path.join('data', 'ner.dev'), '校验数据路径')
flags.DEFINE_string('test_file', os.path.join('data', 'ner.test'), '测试数据路径')
FLAGS = tf.app.flags.FLAGS
assert FLAGS.clip < 5.1, '梯度裁剪不能过大'
assert 0 < FLAGS.dropout < 1, 'dropout必须在0和1之间'
assert FLAGS.lr > 0, 'lr 必须大于0'
assert FLAGS.optimizer in ['adam', 'sgd', 'adagrad'], '优化器必须在adam, sgd, adagrad'
def evaluate(sess, model, name, manager, id_to_tag, logger):
logger.info('evaluate:{}'.format(name))
ner_results = model.evaluate(sess, manager, id_to_tag)
eval_lines = model_utils.test_ner(ner_results, FLAGS.result_path)
for line in eval_lines:
logger.info(line)
f1 = float(eval_lines[1].strip().split()[-1])
if name == "dev":
best_test_f1 = model.best_dev_f1.eval()
if f1 > best_test_f1:
tf.assign(model.best_dev_f1, f1).eval()
logger.info('new best dev f1 socre:{:>.3f}'.format(f1))
return f1 > best_test_f1
elif name == "test":
best_test_f1 = model.best_test_f1.eval()
if f1 > best_test_f1:
tf.assign(model.best_test_f1, f1).eval()
logger.info('new best test f1 score:{:>.3f}'.format(f1))
return f1 > best_test_f1
def train():
# 加载数据集
train_sentences = data_loader.load_sentences(FLAGS.train_file)
dev_sentences = data_loader.load_sentences(FLAGS.dev_file)
test_sentences = data_loader.load_sentences(FLAGS.test_file)
# 转换编码 bio转bioes
data_loader.update_tag_scheme(train_sentences, FLAGS.tag_schema)
data_loader.update_tag_scheme(test_sentences, FLAGS.tag_schema)
data_loader.update_tag_scheme(dev_sentences, FLAGS.tag_schema)
# 创建单词映射及标签映射
if not os.path.isfile(FLAGS.map_file):
if FLAGS.pre_emb:
dico_words_train = data_loader.word_mapping(train_sentences)[0]
dico_word, word_to_id, id_to_word = data_utils.augment_with_pretrained(
dico_words_train.copy(),
FLAGS.emb_file,
list(
itertools.chain.from_iterable(
[[w[0] for w in s] for s in test_sentences]
)
)
)
else:
_, word_to_id, id_to_word = data_loader.word_mapping(train_sentences)
_, tag_to_id, id_to_tag = data_loader.tag_mapping(train_sentences)
with open(FLAGS.map_file, "wb") as f:
pickle.dump([word_to_id, id_to_word, tag_to_id, id_to_tag], f)
else:
with open(FLAGS.map_file, 'rb') as f:
word_to_id, id_to_word, tag_to_id, id_to_tag = pickle.load(f)
train_data = data_loader.prepare_dataset(
train_sentences, word_to_id, tag_to_id
)
dev_data = data_loader.prepare_dataset(
dev_sentences, word_to_id, tag_to_id
)
test_data = data_loader.prepare_dataset(
test_sentences, word_to_id, tag_to_id
)
train_manager = data_utils.BatchManager(train_data, FLAGS.batch_size)
dev_manager = data_utils.BatchManager(dev_data, FLAGS.batch_size)
test_manager = data_utils.BatchManager(test_data, FLAGS.batch_size)
print('train_data_num %i, dev_data_num %i, test_data_num %i' % (len(train_data), len(dev_data), len(test_data)))
model_utils.make_path(FLAGS)
if os.path.isfile(FLAGS.config_file):
config = model_utils.load_config(FLAGS.config_file)
else:
config = model_utils.config_model(FLAGS, word_to_id, tag_to_id)
model_utils.save_config(config, FLAGS.config_file)
log_path = os.path.join("log", FLAGS.log_file)
logger = model_utils.get_logger(log_path)
model_utils.print_config(config, logger)
tf_config = tf.ConfigProto()
tf_config.gpu_options.allow_growth = True
steps_per_epoch = train_manager.len_data
with tf.Session(config=tf_config) as sess:
model = model_utils.create(sess, Model, FLAGS.ckpt_path, load_word2vec, config, id_to_word, logger)
logger.info("开始训练")
loss = []
for i in range(100):
for batch in train_manager.iter_batch(shuffle=True):
step, batch_loss = model.run_step(sess, True, batch)
loss.append(batch_loss)
if step % FLAGS.setps_chech == 0:
iterstion = step // steps_per_epoch + 1
logger.info("iteration:{} step{}/{},NER loss:{:>9.6f}".format(iterstion, step % steps_per_epoch,
steps_per_epoch, np.mean(loss)))
loss = []
best = evaluate(sess, model, "dev", dev_manager, id_to_tag, logger)
if best:
model_utils.save_model(sess, model, FLAGS.ckpt_path, logger)
evaluate(sess, model, "test", test_manager, id_to_tag, logger)
def main(_):
if FLAGS.train:
train()
else:
pass
if __name__ == "__main__":
tf.app.run(main)