-
Notifications
You must be signed in to change notification settings - Fork 206
/
Copy pathexport_onnx.py
executable file
·280 lines (248 loc) · 10.3 KB
/
export_onnx.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
import onnx
import mxnet as mx
from retinaface import RetinaFace
# from retinaface_cov import RetinaFaceCoV
from mxnet.contrib import onnx as onnx_mxnet
import mxnet.contrib.onnx.mx2onnx.export_onnx as mx_op
from mxnet.contrib.onnx.mx2onnx._op_translations import get_inputs, convert_string_to_list
import numpy as np
import argparse
import json
def get_sym_train(symbol):
score_group = []
box_group = []
landmark_group = []
mask_group = []
for layers in symbol:
transpose_layers = mx.symbol.transpose(layers, (0, 2, 3, 1))
if 'face_rpn_cls_prob_reshape_stride' in layers.name:
slice_layers = mx.symbol.slice_axis(transpose_layers, axis=3, begin=2, end=4)
reshape_layers = mx.symbol.Reshape(data=slice_layers,
shape=(0, -1, 1),
name=layers.name + 'transpose')
score_group.append(reshape_layers)
if 'face_rpn_bbox_pred_stride' in layers.name:
reshape_layers = mx.symbol.Reshape(data=transpose_layers,
shape=(0, -1, 4),
name=layers.name + 'transpose')
box_group.append(reshape_layers)
if 'face_rpn_landmark_pred_stride' in layers.name:
reshape_layers = mx.symbol.Reshape(data=transpose_layers,
shape=(0, -1, 10),
name=layers.name + 'transpose')
landmark_group.append(reshape_layers)
if 'face_rpn_type_prob_reshape_stride' in layers.name:
slice_layers = mx.symbol.slice_axis(transpose_layers, axis=3, begin=4, end=6)
reshape_layers = mx.symbol.Reshape(data=slice_layers,
shape=(0, -1, 1),
name=layers.name + 'transpose')
mask_group.append(reshape_layers)
score_concat = mx.sym.concat(*score_group, dim=1, name='score_concat')
bbox_concat = mx.sym.concat(*box_group, dim=1, name='bbox_concat')
landmark_concat = mx.sym.concat(*landmark_group, dim=1, name='landmark_concat')
if len(mask_group) > 0:
mask_concat = mx.sym.concat(*mask_group, dim=1, name='mask_concat')
output = mx.sym.concat(*[score_concat, bbox_concat, landmark_concat, mask_concat], dim=2, name='output')
else:
output = mx.sym.concat(*[score_concat, bbox_concat, landmark_concat], dim=2, name='output')
return output
def change_plus(file_prefix):
file_name = file_prefix + '-symbol.json'
with open(file_name, 'r') as f:
model_dict = json.load(f)
index = 0
for node in model_dict['nodes']:
if 'plus' in node['name']:
node['name'] = '_plus' + str(index)
index += 1
with open(file_name, 'w') as f:
json.dump(model_dict, f, indent=1)
def create_helper_tensor_node(input_vals, output_name, kwargs):
"""create extra tensor node from numpy values"""
data_type = onnx.mapping.NP_TYPE_TO_TENSOR_TYPE[input_vals.dtype]
tensor_node = onnx.helper.make_tensor_value_info(
name=output_name,
elem_type=data_type,
shape=input_vals.shape
)
kwargs["initializer"].append(
onnx.helper.make_tensor(
name=output_name,
data_type=data_type,
dims=input_vals.shape,
vals=input_vals.flatten().tolist(),
raw=False,
)
)
return tensor_node
def create_helper_shape_node(input_node, node_name):
"""create extra transpose node for dot operator"""
trans_node = onnx.helper.make_node(
'Shape',
inputs=[input_node],
outputs=[node_name],
name=node_name
)
return trans_node
@mx_op.MXNetGraph.register("SoftmaxActivation")
def convert_softmax_activation(node, **kwargs):
"""
Map MXNet's softmax operator attributes to onnx's Softmax operator and return the created node.
"""
name, input_nodes, attrs = get_inputs(node, kwargs)
outputs = []
mode = attrs.get("mode", "channel")
axis = -1
if mode == "channel":
# transpose nchw -> nhwc Softmax: axis=3 nhwc -> nchw
trans_op_name = 'transpose' + str(kwargs["idx"])
trans_node = onnx.helper.make_node(
"Transpose",
input_nodes,
[trans_op_name],
name=trans_op_name,
perm=[0, 2, 3, 1]
)
softmax_op_name = 'softmax' + str(kwargs["idx"])
softmax_node = onnx.helper.make_node(
"Softmax",
[trans_op_name],
[softmax_op_name],
axis=3,
name=softmax_op_name
)
output_node = onnx.helper.make_node(
"Transpose",
[softmax_op_name],
[name],
name=name,
perm=[0, 3, 1, 2]
)
outputs.append(trans_node)
outputs.append(softmax_node)
outputs.append(output_node)
else:
softmax_node = onnx.helper.make_node(
"Softmax",
input_nodes,
[name],
axis=axis,
name=name
)
outputs.append(softmax_node)
return outputs
@mx_op.MXNetGraph.register("UpSampling")
def convert_upsample(node, **kwargs):
"""
Map MXNet's UpSampling operator attributes to onnx's Upsample operator and return the created node.
"""
name, input_nodes, attrs = get_inputs(node, kwargs)
sample_type = attrs.get('sample_type', 'nearest')
sample_type = 'linear' if sample_type == 'bilinear' else sample_type
scale = convert_string_to_list(attrs.get('scale'))
scaleh = scalew = float(scale[0])
if len(scale) > 1:
scaleh = float(scale[0])
scalew = float(scale[1])
scale = np.array([1.0, 1.0, scaleh, scalew], dtype=np.float32)
scale_node = create_helper_tensor_node(scale, name + 'scales', kwargs)
input_nodes.append(name + 'scales')
node = onnx.helper.make_node(
'Resize',
input_nodes,
[name],
mode=sample_type,
name=name
)
return [scale_node, node]
@mx_op.MXNetGraph.register("Crop")
def convert_crop(node, **kwargs):
"""Map MXNet's crop operator attributes to onnx's Crop operator
and return the created node.
"""
name, inputs, attrs = get_inputs(node, kwargs)
start = np.array([0, 0, 0, 0], dtype=np.int) # index是int类型
start_node = create_helper_tensor_node(start, name + '_starts', kwargs)
shape_node = create_helper_shape_node(inputs[1], inputs[1] + '_shape')
crop_node = onnx.helper.make_node(
"Slice",
inputs=[inputs[0], name + '_starts', inputs[1] + '_shape'], # data、start、end
outputs=[name],
name=name
)
return [start_node, shape_node, crop_node]
@mx_op.MXNetGraph.register("BatchNorm")
def convert_batchnorm(node, **kwargs):
"""Map MXNet's BatchNorm operator attributes to onnx's BatchNormalization operator
and return the created node.
"""
name, input_nodes, attrs = get_inputs(node, kwargs)
momentum = float(attrs.get("momentum", 0.9))
eps = float(attrs.get("eps", 0.001))
bn_node = onnx.helper.make_node(
"BatchNormalization",
input_nodes,
[name],
name=name,
epsilon=eps,
momentum=momentum
# MXNet computes mean and variance per channel for batchnorm.
# Default for onnx is across all spatial features. Relying on default
# ONNX behavior of spatial=1 for ONNX opset 8 and below. As the spatial
# attribute is deprecated in opset 9 and above, not explicitly encoding it.
)
return [bn_node]
@mx_op.MXNetGraph.register("slice_axis")
def convert_slice_axis(node, **kwargs):
"""Map MXNet's slice_axis operator attributes to onnx's Slice operator
and return the created node.
"""
name, input_nodes, attrs = get_inputs(node, kwargs)
axes = int(attrs.get("axis"))
starts = int(attrs.get("begin"))
ends = attrs.get("end", None)
if not ends:
raise ValueError("Slice: ONNX doesnt't support 'None' in 'end' attribute")
export_nodes = []
starts = np.atleast_1d(np.asarray(starts, dtype=np.int))
ends = np.atleast_1d(np.asarray(ends, dtype=np.int))
axes = np.atleast_1d(np.asarray(axes, dtype=np.int))
starts_node = create_helper_tensor_node(starts, name + '__starts', kwargs)
export_nodes.append(starts_node)
starts_node = starts_node.name
ends_node = create_helper_tensor_node(ends, name + '__ends', kwargs)
export_nodes.append(ends_node)
ends_node = ends_node.name
axes_node = create_helper_tensor_node(axes, name + '__axes', kwargs)
export_nodes.append(axes_node)
axes_node = axes_node.name
input_node = input_nodes[0]
node = onnx.helper.make_node(
"Slice",
[input_node, starts_node, ends_node, axes_node],
[name],
name=name,
)
export_nodes.extend([node])
return export_nodes
def main():
parser = argparse.ArgumentParser(description='convert arcface models to onnx')
# general
parser.add_argument('--prefix', default='./model/R50', help='prefix to load model.')
parser.add_argument('--epoch', default=0, type=int, help='epoch number to load model.')
parser.add_argument('--gpuid', default=0, type=int, help='ctx_id in model.')
parser.add_argument('--network', default='net3', type=str, help='network in model.')
parser.add_argument('--input_shape', nargs='+', default=[1, 3, 640, 640], type=int, help='input shape.')
args = parser.parse_args()
converted_onnx_filename = args.prefix + '.onnx'
model = RetinaFace(args.prefix, args.epoch, args.gpuid, args.network).model
# model = RetinaFaceCoV(args.prefix, args.epoch, args.gpuid, args.network).model
sym, arg_params, aux_params = model.symbol, model._arg_params, model._aux_params
model = get_sym_train(sym)
mx.model.save_checkpoint(args.prefix + '_transpose', args.epoch, model, arg_params, aux_params)
change_plus(args.prefix + '_transpose')
converted_onnx_filename = onnx_mxnet.export_model(args.prefix + '_transpose-symbol.json',
f'{args.prefix}_transpose-{args.epoch:04d}.params',
[args.input_shape], np.float32, converted_onnx_filename)
if __name__ == '__main__':
main()