-
Notifications
You must be signed in to change notification settings - Fork 206
/
Copy pathface_model.py
62 lines (52 loc) · 1.86 KB
/
face_model.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
from __future__ import absolute_import
from __future__ import division
from __future__ import print_function
import numpy as np
import mxnet as mx
import cv2
def do_flip(data):
for idx in range(data.shape[0]):
data[idx, :, :] = np.fliplr(data[idx, :, :])
def get_model(ctx, image_size, model_str, layer):
_vec = model_str.split(',')
assert len(_vec) == 2
prefix = _vec[0]
epoch = int(_vec[1])
print('loading', prefix, epoch)
sym, arg_params, aux_params = mx.model.load_checkpoint(prefix, epoch)
all_layers = sym.get_internals()
sym = all_layers[layer+'_output']
model = mx.mod.Module(symbol=sym, context=ctx, label_names=None)
model.bind(data_shapes=[('data', (1, 3, image_size[0], image_size[1]))])
model.set_params(arg_params, aux_params)
return model
class FaceModel:
def __init__(self, args):
self.args = args
if args.gpu >= 0:
ctx = mx.gpu(args.gpu)
else:
ctx = mx.cpu()
_vec = args.image_size.split(',')
assert len(_vec) == 2
image_size = (int(_vec[0]), int(_vec[1]))
self.model = None
if len(args.model) > 0:
self.model = get_model(ctx, image_size, args.model, 'fc1')
self.image_size = image_size
def get_input(self, face_img):
nimg = cv2.cvtColor(face_img, cv2.COLOR_BGR2RGB)
aligned = np.transpose(nimg, (2, 0, 1))
input_blob = np.expand_dims(aligned, axis=0)
data = mx.nd.array(input_blob)
db = mx.io.DataBatch(data=(data,))
return db
def get_ga(self, data):
self.model.forward(data, is_train=False)
ret = self.model.get_outputs()[0].asnumpy()
g = ret[:, 0:2].flatten()
gender = np.argmax(g)
a = ret[:, 2:202].reshape((100, 2))
a = np.argmax(a, axis=1)
age = int(sum(a))
return gender, age