-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathargs.py
52 lines (49 loc) · 2.73 KB
/
args.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
import argparse
import torch
def get_citation_args():
parser = argparse.ArgumentParser()
parser.add_argument('--no-cuda', action='store_true', default=False,
help='Disables CUDA training.')
parser.add_argument('--seed', type=int, default=42, help='Random seed.')
parser.add_argument('--epochs', type=int, default=300,
help='Number of epochs to train.')
parser.add_argument('--lr', type=float, default=0.2,
help='Initial learning rate.')
parser.add_argument('--weight_decay', type=float, default=5e-4,
help='Weight decay (L2 loss on parameters).') # should use 5e-6 for our method
parser.add_argument('--hidden', type=int, default=16,
help='Number of hidden units.')
parser.add_argument('--dropout', type=float, default=0.5,
help='Dropout rate (1 - keep probability).')
parser.add_argument('--dataset', type=str, default="cora",
help='Dataset to use.')
parser.add_argument('--model', type=str, default="SGC",
choices=["SGC", "GCN"],
help='model to use.')
parser.add_argument('--feature', type=str, default="non",
choices=['non', 'mul', 'cat', 'adj'],
help='feature-type')
parser.add_argument('--normalization', type=str, default='AugNormAdj',
choices=['AugNormAdj'],
help='Normalization method for the adjacency matrix.')
parser.add_argument('--degree', type=int, default=2,
help='degree of the approximation.')
parser.add_argument('--per', type=int, default=-1,
help='Number of each nodes so as to balance.')
parser.add_argument('--experiment', type=str, default="base-experiment",
help='feature-type')
parser.add_argument('--tuned', action='store_true', help='use tuned hyperparams')
parser.add_argument('--strategy', type=str, default='random', help='query strategy')
parser.add_argument('--file_io', type=int, default=0,
help='determine whether use file io')
parser.add_argument('--reweight', type=int, default=1,
choices=[0, 1],
help='whether to use reweighting')
parser.add_argument('--adaptive', type=int, default=1,
choices=[0, 1],
help='to use adaptive weighting')
parser.add_argument('--lambdaa', type=float, default=0.99,
help='control combination')
args, _ = parser.parse_known_args()
args.cuda = not args.no_cuda and torch.cuda.is_available()
return args