Open
Description
Hello,
I played around with the parametric umap going through the mnist notebook.
when running
embedder.save('/path/to/my/model')
I get the this output followed by the following error message:
WARNING:tensorflow:Compiled the loaded model, but the compiled metrics have yet to be built. model.compile_metrics will be empty until you train or evaluate the model.
INFO:tensorflow:Assets written to: C:\Users\niederle.SCREENING-PC-4\_deleteLater\model\encoder\assets
Keras encoder model saved to C:\Users\niederle.SCREENING-PC-4\_deleteLater\model\encoder
INFO:tensorflow:Assets written to: C:\Users\niederle.SCREENING-PC-4\_deleteLater\model\parametric_model\assets
Keras full model saved to C:\Users\niederle.SCREENING-PC-4\_deleteLater\model\parametric_model
WARNING:tensorflow:Compiled the loaded model, but the compiled metrics have yet to be built. model.compile_metrics will be empty until you train or evaluate the model.
INFO:tensorflow:Assets written to: ram://b7a7c013-4fdb-4e8a-a035-80904aa57781/assets
---------------------------------------------------------------------------
FileNotFoundError Traceback (most recent call last)
Input In [42], in <cell line: 1>()
----> 1 embedder.save('C:\\Users\\niederle.SCREENING-PC-4\\_deleteLater\\model')
File ~\anaconda3\envs\analysis_env\lib\site-packages\umap\parametric_umap.py:415, in ParametricUMAP.save(self, save_location, verbose)
413 model_output = os.path.join(save_location, "model.pkl")
414 with open(model_output, "wb") as output:
--> 415 pickle.dump(self, output, pickle.HIGHEST_PROTOCOL)
416 if verbose:
417 print("Pickle of ParametricUMAP model saved to {}".format(model_output))
File ~\anaconda3\envs\analysis_env\lib\site-packages\umap\parametric_umap.py:379, in ParametricUMAP.__getstate__(self)
377 def __getstate__(self):
378 # this function supports pickling, making sure that objects can be pickled
--> 379 return dict(
380 (k, v)
381 for (k, v) in self.__dict__.items()
382 if should_pickle(k, v) and k != "optimizer"
383 )
File ~\anaconda3\envs\analysis_env\lib\site-packages\umap\parametric_umap.py:382, in <genexpr>(.0)
377 def __getstate__(self):
378 # this function supports pickling, making sure that objects can be pickled
379 return dict(
380 (k, v)
381 for (k, v) in self.__dict__.items()
--> 382 if should_pickle(k, v) and k != "optimizer"
383 )
File ~\anaconda3\envs\analysis_env\lib\site-packages\umap\parametric_umap.py:873, in should_pickle(key, val)
871 pickled = codecs.encode(pickle.dumps(val), "base64").decode()
872 # unpickle object
--> 873 unpickled = pickle.loads(codecs.decode(pickled.encode(), "base64"))
874 except (
875 pickle.PicklingError,
876 tf.errors.InvalidArgumentError,
(...)
881 AttributeError,
882 ) as e:
883 warn("Did not pickle {}: {}".format(key, e))
File ~\anaconda3\envs\analysis_env\lib\site-packages\keras\saving\pickle_utils.py:48, in deserialize_model_from_bytecode(serialized_model)
46 with tf.io.gfile.GFile(dest_path, "wb") as f:
47 f.write(archive.extractfile(name).read())
---> 48 model = save_module.load_model(temp_dir)
49 tf.io.gfile.rmtree(temp_dir)
50 return model
File ~\anaconda3\envs\analysis_env\lib\site-packages\keras\utils\traceback_utils.py:67, in filter_traceback.<locals>.error_handler(*args, **kwargs)
65 except Exception as e: # pylint: disable=broad-except
66 filtered_tb = _process_traceback_frames(e.__traceback__)
---> 67 raise e.with_traceback(filtered_tb) from None
68 finally:
69 del filtered_tb
File ~\anaconda3\envs\analysis_env\lib\site-packages\tensorflow\python\saved_model\load.py:915, in load_partial(export_dir, filters, tags, options)
912 loader = Loader(object_graph_proto, saved_model_proto, export_dir,
913 ckpt_options, options, filters)
914 except errors.NotFoundError as err:
--> 915 raise FileNotFoundError(
916 str(err) + "\n You may be trying to load on a different device "
917 "from the computational device. Consider setting the "
918 "`experimental_io_device` option in `tf.saved_model.LoadOptions` "
919 "to the io_device such as '/job:localhost'.")
920 root = loader.get(0)
921 root.graph_debug_info = loader.adjust_debug_info_func_names(debug_info)
FileNotFoundError: Unsuccessful TensorSliceReader constructor: Failed to find any matching files for ram://3bbf5d07-6468-48ed-be1d-e056e006589b/variables/variables
You may be trying to load on a different device from the computational device. Consider setting the `experimental_io_device` option in `tf.saved_model.LoadOptions` to the io_device such as '/job:localhost'.
I am running the code on a windows10 machine in a conda environment consisting of the following packages:
#
# Name Version Build Channel
absl-py 1.0.0 pypi_0 pypi
asttokens 2.0.5 pyhd3eb1b0_0 anaconda
astunparse 1.6.3 pypi_0 pypi
backcall 0.2.0 pyhd3eb1b0_0 anaconda
blas 1.0 mkl
bottleneck 1.3.2 py38h2a96729_1
brotli 1.0.9 ha925a31_2 anaconda
ca-certificates 2022.4.26 haa95532_0 anaconda
cachetools 5.1.0 pypi_0 pypi
certifi 2021.10.8 py38haa95532_2 anaconda
charset-normalizer 2.0.12 pypi_0 pypi
colorama 0.4.4 pyhd3eb1b0_0 anaconda
cycler 0.11.0 pyhd3eb1b0_0 anaconda
debugpy 1.5.1 py38hd77b12b_0 anaconda
decorator 5.1.1 pyhd3eb1b0_0 anaconda
entrypoints 0.4 py38haa95532_0 anaconda
executing 0.8.3 pyhd3eb1b0_0 anaconda
flatbuffers 1.12 pypi_0 pypi
fonttools 4.25.0 pyhd3eb1b0_0 anaconda
freetype 2.10.4 hd328e21_0 anaconda
gast 0.4.0 pypi_0 pypi
google-auth 2.6.6 pypi_0 pypi
google-auth-oauthlib 0.4.6 pypi_0 pypi
google-pasta 0.2.0 pypi_0 pypi
grpcio 1.46.3 pypi_0 pypi
h5py 3.7.0 pypi_0 pypi
icc_rt 2019.0.0 h0cc432a_1
icu 58.2 vc14hc45fdbb_0 [vc14] anaconda
idna 3.3 pypi_0 pypi
importlib-metadata 4.11.4 pypi_0 pypi
intel-openmp 2021.3.0 haa95532_3372
ipykernel 6.9.1 py38haa95532_0 anaconda
ipython 8.2.0 py38haa95532_0 anaconda
jedi 0.18.1 py38haa95532_1 anaconda
joblib 1.1.0 pyhd8ed1ab_0 conda-forge
jpeg 9e h2bbff1b_0 anaconda
jupyter_client 7.2.2 py38haa95532_0 anaconda
jupyter_core 4.9.2 py38haa95532_0 anaconda
keras 2.9.0 pypi_0 pypi
keras-preprocessing 1.1.2 pypi_0 pypi
kiwisolver 1.3.2 py38hd77b12b_0 anaconda
libclang 14.0.1 pypi_0 pypi
libpng 1.6.37 h2a8f88b_0 anaconda
libtiff 4.2.0 hd0e1b90_0 anaconda
libwebp 1.2.2 h2bbff1b_0 anaconda
libzlib 1.2.11 h8ffe710_1013 conda-forge
llvmlite 0.37.0 py38h57a6900_0 conda-forge
lz4-c 1.9.3 h2bbff1b_1 anaconda
markdown 3.3.7 pypi_0 pypi
matplotlib 3.5.1 py38haa95532_1 anaconda
matplotlib-base 3.5.1 py38hd77b12b_1 anaconda
matplotlib-inline 0.1.2 pyhd3eb1b0_2 anaconda
mkl 2021.3.0 haa95532_524
mkl-service 2.4.0 py38h2bbff1b_0
mkl_fft 1.3.0 py38h277e83a_2
mkl_random 1.2.2 py38hf11a4ad_0
munkres 1.1.4 py_0 anaconda
nest-asyncio 1.5.5 py38haa95532_0 anaconda
numba 0.54.1 py38h5858985_0 conda-forge
numexpr 2.7.3 py38hb80d3ca_1
numpy 1.20.3 py38ha4e8547_0
numpy-base 1.20.3 py38hc2deb75_0
oauthlib 3.2.0 pypi_0 pypi
openssl 1.1.1n h2bbff1b_0 anaconda
opt-einsum 3.3.0 pypi_0 pypi
packaging 21.3 pyhd3eb1b0_0 anaconda
pandas 1.3.3 py38h6214cd6_0
parso 0.8.3 pyhd3eb1b0_0 anaconda
pickleshare 0.7.5 pyhd3eb1b0_1003 anaconda
pillow 9.0.1 py38hdc2b20a_0 anaconda
pip 21.0.1 py38haa95532_0
prompt-toolkit 3.0.20 pyhd3eb1b0_0 anaconda
protobuf 3.19.4 pypi_0 pypi
pure_eval 0.2.2 pyhd3eb1b0_0 anaconda
pyasn1 0.4.8 pypi_0 pypi
pyasn1-modules 0.2.8 pypi_0 pypi
pygments 2.11.2 pyhd3eb1b0_0 anaconda
pynndescent 0.5.4 pyh6c4a22f_0 conda-forge
pyparsing 3.0.9 pypi_0 pypi
pyqt 5.9.2 py38ha925a31_4 anaconda
python 3.8.12 h6244533_0
python-dateutil 2.8.2 pyhd3eb1b0_0
python_abi 3.8 2_cp38 conda-forge
pytz 2021.3 pyhd3eb1b0_0
pywin32 302 py38h2bbff1b_2 anaconda
pyzmq 22.3.0 py38hd77b12b_2 anaconda
qt 5.9.7 vc14h73c81de_0 [vc14] anaconda
requests 2.27.1 pypi_0 pypi
requests-oauthlib 1.3.1 pypi_0 pypi
rsa 4.8 pypi_0 pypi
scikit-learn 0.24.2 py38hf11a4ad_1
scipy 1.7.1 py38hbe87c03_2
setuptools 58.0.4 py38haa95532_0
sip 6.5.1 py38hd77b12b_0 anaconda
six 1.16.0 pyhd3eb1b0_0
sqlite 3.36.0 h2bbff1b_0
stack_data 0.2.0 pyhd3eb1b0_0 anaconda
tbb 2021.3.0 h2d74725_0 conda-forge
tensorboard 2.9.0 pypi_0 pypi
tensorboard-data-server 0.6.1 pypi_0 pypi
tensorboard-plugin-wit 1.8.1 pypi_0 pypi
tensorflow 2.9.1 pypi_0 pypi
tensorflow-estimator 2.9.0 pypi_0 pypi
tensorflow-io-gcs-filesystem 0.26.0 pypi_0 pypi
termcolor 1.1.0 pypi_0 pypi
threadpoolctl 3.0.0 pyh8a188c0_0 conda-forge
tk 8.6.11 h2bbff1b_0 anaconda
toml 0.10.2 pyhd3eb1b0_0 anaconda
tornado 6.1 py38h2bbff1b_0 anaconda
traitlets 5.1.1 pyhd3eb1b0_0 anaconda
typing-extensions 4.2.0 pypi_0 pypi
umap-learn 0.5.1 py38haa244fe_1 conda-forge
urllib3 1.26.9 pypi_0 pypi
vc 14.2 h21ff451_1
vs2015_runtime 14.27.29016 h5e58377_2
wcwidth 0.2.5 pyhd3eb1b0_0 anaconda
werkzeug 2.1.2 pypi_0 pypi
wheel 0.37.0 pyhd3eb1b0_1
wincertstore 0.2 py38haa95532_2
wrapt 1.14.1 pypi_0 pypi
xz 5.2.5 h62dcd97_0 anaconda
zipp 3.8.0 pypi_0 pypi
zlib 1.2.11 h8ffe710_1013 conda-forge
zstd 1.4.5 h04227a9_0 anaconda
I have no idea what goes wrong and whether I can do anything to solve the issue. I would be happy about feedback and I hope this is the right place to ask for help.
Metadata
Metadata
Assignees
Labels
No labels