-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy patheval.py
404 lines (328 loc) · 16.1 KB
/
eval.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
import os
import sys
from typing import Type
# from train import logger
import numpy as np
import torch
from config import opt
from loss import MyContrastiveLoss
from utils import logger
def evalrank(model, data_loader, opt_, mylog, writer, epoch, split='dev', fold5=False, max_violation=False):
mylog.info("-------- evaluation --------")
model.eval()
with torch.no_grad():
img_embs, cap_embs, pool_imgs, cap_pool, cap_lens = encode_data(model, data_loader, max_violation=max_violation)
if not fold5:
# no cross-validation, full evaluation
# img_embs = np.array([img_embs[i] for i in range(0, len(img_embs), 5)])
# 图像去除冗余
selected_indices = torch.arange(0, len(img_embs), 5)
img_embs = img_embs[selected_indices]
pool_imgs = pool_imgs[selected_indices]
sims = shard_xattn(model, pool_imgs, img_embs, cap_pool, cap_embs, cap_lens, opt_, shard_size=64)
r, rt = i2t(img_embs, sims, return_ranks=True)
ri, rti = t2i(img_embs, sims, return_ranks=True)
ar = (r[0] + r[1] + r[2]) / 3
ari = (ri[0] + ri[1] + ri[2]) / 3
rsum = r[0] + r[1] + r[2] + ri[0] + ri[1] + ri[2]
print()
mylog.info("rsum: %.1f" % rsum)
mylog.info("Average i2t Recall: %.1f" % ar)
mylog.info("Image to text: %.1f %.1f %.1f %.1f %.1f" % r)
mylog.info("Average t2i Recall: %.1f" % ari)
mylog.info("Text to image: %.1f %.1f %.1f %.1f %.1f" % ri)
# 记录数据
writer.add_scalar("i2t_r1", r[0], epoch)
writer.add_scalar("i2t_r5", r[1], epoch)
writer.add_scalar("i2t_r10", r[2], epoch)
writer.add_scalar("t2i_r1", ri[0], epoch)
writer.add_scalar("t2i_r5", ri[1], epoch)
writer.add_scalar("t2i_r10", ri[2], epoch)
writer.add_scalar("R_SUM", rsum, epoch)
# message = "split: %s, Image to text: (%.1f, %.1f, %.1f) " % (split, r[0], r[1], r[2])
# message += "Text to image: (%.1f, %.1f, %.1f) " % (ri[0], ri[1], ri[2])
# message += "rsum: %.1f\n" % rsum
if split == "test" or split == "testall":
# torch.save({'rt': rt, 'rti': rti}, os.path.join(opt.logger_name, 'ranks.pth.tar'))
# torch.save({"sims_ti": sims_0, "sims_it": sims_1}, os.path.join(opt.logger_name, 'sims_seperate.pth.tar'))
torch.save(sims, os.path.join(opt_.sim_path, 'sims.pth.tar'))
else:
results = []
selected_indices = torch.arange(0, len(img_embs), 5)
img_embs = img_embs[selected_indices]
pool_imgs = pool_imgs[selected_indices]
for i in range(5): # 每次取五分之一数据,交叉验证
img_embs_shard = img_embs[i * 1000:(i + 1) * 1000]
pool_imgs_shard = pool_imgs[i * 1000:(i + 1) * 1000]
cap_embs_shard = cap_embs[i * 5000:(i + 1) * 5000]
cap_pool_shard = cap_pool[i * 5000:(i + 1) * 5000]
cap_lens_shard = cap_lens[i * 5000:(i + 1) * 5000]
sims = shard_xattn(model, pool_imgs_shard, img_embs_shard, cap_pool_shard, cap_embs_shard, cap_lens_shard,
opt_, shard_size=64)
r, rt = i2t(img_embs, sims, return_ranks=True)
ri, rti = t2i(img_embs, sims, return_ranks=True)
ar = (r[0] + r[1] + r[2]) / 3
ari = (ri[0] + ri[1] + ri[2]) / 3
rsum = r[0] + r[1] + r[2] + ri[0] + ri[1] + ri[2]
print()
results += [list(r) + list(ri) + [rsum, ar, ari]]
print("-----------------------------------")
mean_metrics = tuple(np.array(results).mean(axis=0).flatten())
mylog.info("rsum: %.1f" % mean_metrics[10])
mylog.info("Average i2t Recall: %.1f" % mean_metrics[11])
mylog.info("Image to text: %.1f %.1f %.1f %.1f %.1f" % mean_metrics[:5])
mylog.info("Average t2i Recall: %.1f" % mean_metrics[12])
mylog.info("Text to image: %.1f %.1f %.1f %.1f %.1f" % mean_metrics[5:10])
# 记录数据
writer.add_scalar("i2t_r1", mean_metrics[0], epoch)
writer.add_scalar("i2t_r5", mean_metrics[1], epoch)
writer.add_scalar("i2t_r10", mean_metrics[2], epoch)
writer.add_scalar("t2i_r1", mean_metrics[5], epoch)
writer.add_scalar("t2i_r5", mean_metrics[6], epoch)
writer.add_scalar("t2i_r10", mean_metrics[7], epoch)
writer.add_scalar("R_SUM", mean_metrics[10], epoch)
rsum = mean_metrics[10]
return rsum
def encode_data(model, data_loader, max_violation=False):
device = torch.device("cuda:0" if torch.cuda.is_available() else "cpu")
# 开始取出dataloader中的所有数据保存,
# 找到每一batch中,文本的最大长度
max_n_word = 0
for i, (_, _, _, txt_lengths, _) in enumerate(data_loader):
max_n_word = max(max_n_word, max(txt_lengths))
# 定义返回的总体嵌入的数据
img_embs = None
cap_embs = None
cap_lens = None
# 定义池化的图文
pool_imgs = None
pool_txts = None
# 定义损失函数
loss_function = MyContrastiveLoss(device=device, margin=opt.margin, max_violation=max_violation).to(device)
# 初始化
for i, val_data in enumerate(data_loader):
images, img_lengths, captions, txt_lengths, indexes = val_data
# 将每一批的图片、标签迁移到GPU上
val_images_gpu, val_captions_gpu = images.to(device), captions.to(device)
txt_lengths = torch.tensor(txt_lengths).to(device)
img_lengths = img_lengths.to(device)
# 前向传播
model.eval()
img_emb, txt_emb, poolimg, pooltxt, lens = model.forward_emb(val_images_gpu, img_lengths, val_captions_gpu,
txt_lengths)
score = model.forward_score(poolimg, img_emb, pooltxt, txt_emb, lens, opt)
# txt长度
# txt_len = txt_emb.size(1)
lens = torch.tensor(lens)
# 构建一个批次的相同长度
# cap_len = torch.full((len(txt_lengths),), txt_len)
# 初始化数据
if img_embs is None:
img_embs = torch.zeros((len(data_loader.dataset), img_emb.size(1), img_emb.size(2)), device=device)
pool_imgs = torch.zeros((len(data_loader.dataset), img_emb.size(2)), device=device)
cap_embs = torch.zeros((len(data_loader.dataset), max_n_word, txt_emb.size(2)), device=device)
pool_txts = torch.zeros((len(data_loader.dataset), txt_emb.size(2)), device=device)
cap_lens = [0] * len(data_loader.dataset)
# 缓存数据
indexes = torch.tensor(indexes)
img_embs[indexes] = img_emb.detach().clone()
cap_embs[indexes, :max(txt_lengths), :] = txt_emb.detach().clone()
for j, nid in enumerate(indexes):
cap_lens[nid] = lens[j].item()
pooled_img, pooled_txt = poolimg, pooltxt
pool_imgs[indexes] = pooled_img
pool_txts[indexes] = pooled_txt
# measure accuracy and record loss
loss = loss_function(score)
logger.info(f"测试:第{i}batch,共{len(data_loader)}batch size,当前batch的loss:{loss}")
del images, captions
return img_embs, cap_embs, pool_imgs, pool_txts, cap_lens
def shard_xattn_Full(model, images_fc, images, caption_ht, captions, caplens, opt: Type[opt], shard_size):
"""
Computer pairwise t2i image-caption distance with locality sharding
"""
n_im_shard = int((len(images) - 1) / shard_size) + 1
n_cap_shard = int((len(captions) - 1) / shard_size) + 1
print("n_im_shard: %d, n_cap_shard: %d" % (n_im_shard, n_cap_shard))
d_t2i = torch.zeros((len(images), len(captions))).cuda()
d_i2t = torch.zeros((len(images), len(captions))).cuda()
for i in range(n_im_shard):
im_start, im_end = shard_size * i, min(shard_size * (i + 1), len(images))
for j in range(n_cap_shard):
sys.stdout.write('\r>> shard_xattn: batch (%d,%d)' % (i, j))
cap_start, cap_end = shard_size * j, min(shard_size * (j + 1), len(captions))
im_fc = images_fc[im_start:im_end]
im_emb = images[im_start:im_end]
h = caption_ht[cap_start:cap_end]
s = captions[cap_start:cap_end]
l = caplens[cap_start:cap_end]
sim_list_t2i = model.xattn_score_Text_(im_fc, im_emb, h, s, l, opt)
sim_list_i2t = model.xattn_score_Image_(im_fc, im_emb, h, s, l, opt)
# assert len(sim_list_t2i) == opt.iteration_step and len(sim_list_i2t) == opt.iteration_step
# for k in range(opt.iteration_step):
d_t2i[im_start:im_end, cap_start:cap_end] = sim_list_t2i.data
d_i2t[im_start:im_end, cap_start:cap_end] = sim_list_i2t.data
# score = 0
# for j in range(opt.iteration_step):
# score += d_t2i[j]
# for j in range(opt.iteration_step):
# score += d_i2t[j]
score = d_i2t + d_i2t
return score
def shard_xattn_Image(model, images_fc, images, caption_ht, captions, caplens, opt: Type[opt], shard_size):
"""
Computer pairwise t2i image-caption distance with locality sharding
"""
n_im_shard = int((len(images) - 1) / shard_size) + 1
n_cap_shard = int((len(captions) - 1) / shard_size) + 1
print("n_im_shard: %d, n_cap_shard: %d" % (n_im_shard, n_cap_shard))
d = torch.zeros((len(images), len(captions))).cuda()
for i in range(n_im_shard):
im_start, im_end = shard_size * i, min(shard_size * (i + 1), len(images))
for j in range(n_cap_shard):
sys.stdout.write('\r>> shard_xattn: batch (%d,%d)' % (i, j))
cap_start, cap_end = shard_size * j, min(shard_size * (j + 1), len(captions))
im_fc = images_fc[im_start:im_end]
im_emb = images[im_start:im_end]
h = caption_ht[cap_start:cap_end]
s = captions[cap_start:cap_end]
l = caplens[cap_start:cap_end]
sim_list = model.xattn_score_Image_(im_fc, im_emb, h, s, l, opt)
# assert len(sim_list) == opt.iteration_step
d[im_start:im_end, cap_start:cap_end] = sim_list.data
score = d
return score
def shard_xattn_Text(model, images_fc, images, caption_ht, captions, caplens, opt, shard_size):
"""
Computer pairwise t2i image-caption distance with locality sharding
"""
n_im_shard = int((len(images) - 1) / shard_size) + 1
n_cap_shard = int((len(captions) - 1) / shard_size) + 1
print("n_im_shard: %d, n_cap_shard: %d" % (n_im_shard, n_cap_shard))
d = torch.zeros((len(images), len(captions))).cuda()
for i in range(n_im_shard):
im_start, im_end = shard_size * i, min(shard_size * (i + 1), len(images))
for j in range(n_cap_shard):
sys.stdout.write('\r>> shard_xattn: batch (%d,%d)' % (i, j))
cap_start, cap_end = shard_size * j, min(shard_size * (j + 1), len(captions))
im_fc = images_fc[im_start:im_end]
im_emb = images[im_start:im_end]
h = caption_ht[cap_start:cap_end]
s = captions[cap_start:cap_end]
l = caplens[cap_start:cap_end]
sim_list = model.xattn_score_Text_(im_fc, im_emb, h, s, l, opt)
# assert len(sim_list) == opt.iteration_step
# for k in range(opt.iteration_step):
# if len(sim_list[k]) != 0:
d[im_start:im_end, cap_start:cap_end] = sim_list.data
score = d
return score
def shard_xattn(model, img_pool, images, txt_pool, captions, caplens, opt: Type[opt], shard_size=64):
if opt.model_mode == "full":
sims = shard_xattn_Full(model, img_pool, images, txt_pool, captions, caplens, opt, shard_size=128)
elif opt.model_mode == "image":
sims = shard_xattn_Image(model, img_pool, images, txt_pool, captions, caplens, opt, shard_size=128)
sims2 = shard_xattn_t2i_i2t(images, captions, img_pool, txt_pool)
sims = sims + sims2
elif opt.model_mode == "text":
sims = shard_xattn_Text(model, img_pool, images, txt_pool, captions, caplens, opt, shard_size=128)
sims2 = shard_xattn_t2i_i2t(images, captions, img_pool, txt_pool)
sims = sims + sims2
else:
sims = shard_xattn_t2i_i2t(images, captions, img_pool, txt_pool)
return sims
# 计算整个测试数据集的相似度矩阵,分批次
def shard_xattn_t2i_i2t(images, captions, pool_imgs, pool_texts, device="cuda:0", shard_size=128):
# 图像部分切片数量
n_im_shard = (len(images) - 1) // shard_size + 1
print("img shard num:{}".format(n_im_shard))
# 文本部分切片数量
n_cap_shard = (len(captions) - 1) // shard_size + 1
print("text shard num:{}".format(n_cap_shard))
# 返回的相似度矩阵
d = torch.zeros((len(images), len(captions))).to(device=device)
# 图像区域
img_region = images.size(1)
for i in range(n_im_shard):
im_start, im_end = shard_size * i, min(shard_size * (i + 1), len(images))
tmp_img_size = im_end - im_start
for j in range(n_cap_shard):
sys.stdout.write('\r>> shard_xattn: batch (%d,%d)' % (i, j))
cap_start, cap_end = shard_size * j, min(shard_size * (j + 1), len(captions))
tmp_txt_size = cap_end - cap_start
img = images[im_start:im_end].to(device)
# 获取对应的切片的池化后的图像文本
pooled_img = pool_imgs[im_start: im_end]
pooled_txt = pool_texts[cap_start: cap_end]
# 计算s1
sim = get_sim(pooled_img, pooled_txt).cpu()
# 得到s1+s2
scores = sim
# 将切片的相似度矩阵放入整体矩阵中
d[im_start:im_end, cap_start:cap_end] = scores
sys.stdout.write('结束!!!!!!\n')
return d
def i2t(images, sims, return_ranks=False):
"""
Images->Text (Image Annotation)
Images: (N, n_region, d) matrix of images
Captions: (5N, max_n_word, d) matrix of captions
CapLens: (5N) array of caption lengths
sims: (N, 5N) matrix of similarity im-cap
"""
sims = sims.cpu().numpy()
npts = images.size(0)
ranks = np.zeros(npts)
top1 = np.zeros(npts)
for index in range(npts):
inds = np.argsort(sims[index])[::-1] # 倒序
# Score
rank = 1e20
for i in range(5 * index, 5 * index + 5, 1):
tmp = np.where(inds == i)[0][0]
if tmp < rank:
rank = tmp
ranks[index] = rank
top1[index] = inds[0]
# Compute metrics
r1 = 100.0 * len(np.where(ranks < 1)[0]) / len(ranks)
r5 = 100.0 * len(np.where(ranks < 5)[0]) / len(ranks)
r10 = 100.0 * len(np.where(ranks < 10)[0]) / len(ranks)
medr = np.floor(np.median(ranks)) + 1
meanr = ranks.mean() + 1
if return_ranks:
return (r1, r5, r10, medr, meanr), (ranks, top1)
else:
return r1, r5, r10, medr, meanr
def t2i(images, sims, return_ranks=False):
"""
Text->Images (Image Search)
Images: (N, n_region, d) matrix of images
Captions: (5N, max_n_word, d) matrix of captions
CapLens: (5N) array of caption lengths
sims: (N, 5N) matrix of similarity im-cap
"""
sims = sims.cpu().numpy()
npts = images.shape[0]
ranks = np.zeros(5 * npts)
top1 = np.zeros(5 * npts)
# --> (5N(caption), N(image))
sims = sims.T
for index in range(npts):
for i in range(5):
inds = np.argsort(sims[5 * index + i])[::-1]
ranks[5 * index + i] = np.where(inds == index)[0][0]
top1[5 * index + i] = inds[0]
# Compute metrics
r1 = 100.0 * len(np.where(ranks < 1)[0]) / len(ranks)
r5 = 100.0 * len(np.where(ranks < 5)[0]) / len(ranks)
r10 = 100.0 * len(np.where(ranks < 10)[0]) / len(ranks)
medr = np.floor(np.median(ranks)) + 1
meanr = ranks.mean() + 1
if return_ranks:
return (r1, r5, r10, medr, meanr), (ranks, top1)
else:
return r1, r5, r10, medr, meanr
def get_sim(images, captions):
similarities = images.mm(captions.t())
return similarities