-
Notifications
You must be signed in to change notification settings - Fork 2
/
Copy pathevaluate.py
213 lines (178 loc) · 6.25 KB
/
evaluate.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
import argparse
import json
import os
import random
import nltk
import torch
from datasets import load_dataset
from peft import PeftModel
from transformers import (
AutoModelForSequenceClassification,
AutoTokenizer,
GenerationConfig,
LlamaForCausalLM,
LlamaTokenizer,
)
from model_config import load_model_and_tokenizer
from prompts import create_context_and_generate_prompt, speaker_id_to_name
parser = argparse.ArgumentParser(description="Evaluation script")
parser.add_argument(
"--model_type", default="base", help="Model type: base, LoRA, Pre, or PreLoRA"
)
parser.add_argument("--subject", default="biden", help="Subject: biden or trump")
parser.add_argument(
"--n_samples", type=int, default=100, help="Number of samples to evaluate"
)
parser.add_argument(
"--mode",
choices=["eval", "user"],
default="eval",
help="Evaluation mode: eval or user",
)
parser.add_argument(
"--user_input", type=str, help="User input for generating a response in user mode"
)
parser.add_argument("--at_epoch", default=None, help="Epoch to load model from")
args = parser.parse_args()
base_model_path = "decapoda-research/llama-7b-hf"
model = LlamaForCausalLM.from_pretrained(
base_model_path,
load_in_8bit=True,
torch_dtype=torch.float16,
device_map={"": 0},
)
if args.model_type.lower() == "lora":
path = f"models/{args.subject.lower()}/lora-1"
print(f"Loading model from {path}...")
model = PeftModel.from_pretrained(
model,
"models/biden/lora",
torch_dtype=torch.float16,
device_map={"": 0},
)
elif args.model_type.lower() == "pre-tune":
path = f"models/{args.subject.lower()}/pre1"
print(f"Loading model from {path}...")
model = PeftModel.from_pretrained(
model,
path,
torch_dtype=torch.float16,
device_map={"": 0},
)
tokenizer = LlamaTokenizer.from_pretrained(base_model_path)
model.eval()
classifier_tokenizer = AutoTokenizer.from_pretrained(
f"./classifier/{args.subject.lower()}_classifier/checkpoint-4550"
)
classifier_model = AutoModelForSequenceClassification.from_pretrained(
f"./classifier/{args.subject.lower()}_classifier/checkpoint-4550"
)
device = torch.device("cuda" if torch.cuda.is_available() else "cpu")
num_learnable_tokens = 1
cutoff_len = 512
def tokenize(prompt):
result = tokenizer(
prompt,
truncation=True,
max_length=cutoff_len + 1,
padding="max_length",
)
return {
"input_ids": torch.tensor(result["input_ids"][:-1], device=device),
"attention_mask": torch.tensor(result["attention_mask"][:-1], device=device),
}
def tokenize_prefix_tuning(prompt):
result = tokenizer(
prompt,
truncation=True,
max_length=cutoff_len + 1,
padding="max_length",
)
input_ids = result["input_ids"][:-1]
attention_mask = result["attention_mask"][:-1]
num_virtual_tokens = num_virtual_tokens
input_ids = [num_virtual_tokens] + input_ids
attention_mask = [1] + attention_mask
return {
"input_ids": torch.tensor(input_ids, device=device),
"attention_mask": torch.tensor(attention_mask, device=device),
}
def eval_method_classifier(generated_responses, actual_responses):
scores = []
for generated_response in generated_responses:
inputs = tokenizer(generated_response, return_tensors="pt")
with torch.no_grad():
logits = classifier_model(**inputs).logits
predicted_class_id = logits.argmax().item()
scores.append(predicted_class_id)
avg_score = sum(scores) / len(scores)
print(f"Average score: {avg_score:.4f}")
return avg_score
def eval_method_blue(generated_responses, actual_responses):
avg_bleu_score = nltk.translate.bleu_score.corpus_bleu(
actual_responses, generated_responses
)
print(f"Average BLEU score: {avg_bleu_score:.4f}")
return avg_bleu_score
def generate(input):
prompt = create_context_and_generate_prompt(input, args.subject)
inputs = (
tokenize(prompt)
if args.model_type.lower() != "pre-tune"
else tokenize_prefix_tuning(prompt)
)
input_ids = inputs["input_ids"].cuda()
print(input_ids.shape)
generation_config = GenerationConfig(
temperature=0.5, top_p=0.75, top_k=40, num_beams=1
)
model.config.use_cache = True
print("Generating response...")
with torch.no_grad():
generation_output = model.generate(
input_ids=input_ids,
generation_config=generation_config,
return_dict_in_generate=True,
output_scores=True,
max_new_tokens=100,
)
s = generation_output.sequences[0]
output = tokenizer.decode(s)
return output.split(f"### {speaker_id_to_name(args.subject)}:")[1].strip()
if args.mode == "eval":
test_data = load_dataset(
"json",
data_files=f"data/finalized_data/{args.subject}/{args.subject}_test.json",
)["train"]
generated_responses = []
actual_responses = []
for i in range(args.n_samples):
j = random.randint(0, len(test_data) - 1)
user_input = test_data[j]["context"]
actual_responses.append(test_data[j]["response"])
generated_responses.append(generate(user_input))
classifier_score = eval_method_classifier(generated_responses, actual_responses)
avg_bleu_score = eval_method_blue(generated_responses, actual_responses)
os.makedirs("./evals", exist_ok=True)
current_model = args.at_epoch if args.at_epoch else "latest"
with open(
f"./evals/{args.subject}_{args.model_type}_{current_model}.json", "w"
) as f:
json.dump(
{
"generated_responses": generated_responses,
"actual_responses": actual_responses,
},
f,
)
print(f"Generated {args.n_samples} responses.")
print("Evaluating with classifier...")
print(f"Classifier score: {classifier_score:.4f}")
print("Evaluating with BLEU...")
print(f"BLEU score: {avg_bleu_score:.4f}")
elif args.mode == "user":
user_input = args.user
if not user_input:
raise ValueError("User input is required for user mode.")
generated_response = generate(user_input)
# print(f"Generated Response: {generated_response}")