From 11d4006e92fd642954d9d9184c4e42775c79b26e Mon Sep 17 00:00:00 2001 From: KangyuWeng Date: Mon, 20 Jan 2025 15:58:38 -0500 Subject: [PATCH] Update research.rst with papers after 2024 June. --- docs/user/research.rst | 225 ++++++++++++++++++++++++++++++++++++++++- 1 file changed, 222 insertions(+), 3 deletions(-) diff --git a/docs/user/research.rst b/docs/user/research.rst index e578e3b7d..5c7ceeb65 100644 --- a/docs/user/research.rst +++ b/docs/user/research.rst @@ -3,7 +3,7 @@ Research DeepXDE has been used in -- > 180 universities, e.g., +- > 230 universities, e.g., `Harvard University `_, `Massachusetts Institute of Technology `_, `Stanford University `_, @@ -14,6 +14,7 @@ DeepXDE has been used in `Johns Hopkins University `_, `University of Pennsylvania `_, `Tsinghua University `_, + `University of Toronto `_, `California Institute of Technology `_, `Princeton University `_, `Cornell University `_, @@ -21,12 +22,14 @@ DeepXDE has been used in `Nanyang Technological University `_, `University of California, San Diego `_, `Peking University `_, + `University of Amsterdam `_, `New York University Abu Dhabi `_, `University of British Columbia `_, `University of Copenhagen `_, `KU Leuven `_, `University of Pittsburgh `_, `Zhejiang University `_, + `hanghai Jiao Tong University `_, `University of Texas at Austin `_, `Leiden University `_, `University of Minnesota `_, @@ -34,6 +37,11 @@ DeepXDE has been used in `University of Chinese Academy of Sciences `_, `Georgia Institute of Technology `_, `Boston University `_, + `University of Maryland `_, + `Universite Paris Saclay `_, + `University of Chinese Academy of Sciences `_, + `The University of Tokyo `_, + `University of Science and Technology of China `_, `University of Southern California `_, `University of Wisconsin Madison `_, `Technical University of Munich `_, @@ -43,6 +51,7 @@ DeepXDE has been used in `University of Colorado Boulder `_, `University of Illinois at Urbana-Champaign `_, `University of California Irvine `_, + `Sun Yat-sen University `_, `King Abdullah University of Science and Technology `_, `University of Oslo `_, `University of Florida `_, @@ -50,8 +59,10 @@ DeepXDE has been used in `University of Exeter `_, `University of Southampton `_, `University of California, Santa Cruz `_, + `University of Padua `_, `Carnegie Mellon University `_, `Seoul National University `_, + `University of Leeds `_, `Sapienza University Rome `_, `University of Alberta `_, `University of Liverpool `_, @@ -74,13 +85,17 @@ DeepXDE has been used in `Southeast University `_, `Delft University of Technology `_, `University of Naples Federico II `_, + `University of Waterloo `_, `Tianjin University `_, `Xiamen University `_, `University of Calgary `_, `Beijing Normal University `_, `Kapodistrian University `_, + `University of Turin `_, `RWTH Aachen University `_, + `National Taiwan University `_, `China University of Geosciences `_, + `Sichuan University `_, `Rice University `_, `Beihang University `_, `University of Sussex `_, @@ -90,18 +105,23 @@ DeepXDE has been used in `Tufts University `_, `Wuhan University of Technology `_, `Universidade do Porto `_, + `University Duisburg-Essen `_, `Florida State University `_, + `Karlsruhe Institute of Technology `_, `University Duisburg-Essen `_, + `Dartmouth College `_, `University of Western Ontario `_, `University of Strasbourg `_, `University of Surrey `_, `Shanghai University `_, `Chalmers University of Technology `_, + `Pontificia Universidad Católica de Chile `_, `Kyushu University `_, `Nagoya University `_, `University of Johannesburg `_, `University of Rome Tor Vergata `_, `University of Kentucky `_, + `Mansoura University `_, `Eindhoven University of Technology `_, `Friedrich Schiller University of Jena `_, `University of Victoria `_, @@ -111,6 +131,8 @@ DeepXDE has been used in `University of Delaware `_, `University of Mississippi `_, `Swansea University `_, + `University of Bath `_, + `University of Trieste `_, `University of the Basque Country `_, `Hong Kong Baptist University `_, `University of Hawaii Manoa `_, @@ -119,15 +141,19 @@ DeepXDE has been used in `University of Sevilla `_, `International School for Advanced Studies `_, `Beijing University of Technology `_, + `Nanjing Tech University `_, `TU Wien `_, `Beijing Jiaotong University `_, + `University of Canterbury `_, `Universidade do Minho `_, `Nanchang University `_, `Carleton University `_, + `Ocean University of China `_, `South China Normal University `_, `Roma Tre University `_, `AmirKabir University of Technology `_, `Sabanci University `_, + `Indian Institute of Technology `_, `Concordia University `_, `Tarbiat Modares University `_, `Graz University of Technology `_, @@ -151,11 +177,15 @@ DeepXDE has been used in `Ulster University `_, `University of Thessaly `_, `Kuwait University `_, + `University of Malaga `_, `Brno University of Technology `_, `Old Dominion University `_, + `Johannes Kepler University Linz `_, `University of Kragujevac `_, `California Polytechnic State University `_, `Chung-Ang University `_, + `Graz University of Technology `_, + `Shahid Beheshti University `_, `Shanghai Normal University `_, `Cadi Ayyad University `_, `Universidad Rey Juan Carlos `_, @@ -166,26 +196,48 @@ DeepXDE has been used in `University of A Coruña `_, `Worcester Polytechnic Institute `_, `Xinjiang University `_, + `LUT University `_, `University of Las Palmas de Gran Canaria `_, + `Nanjing University of Aeronautics and Astronautics ` + `Lahore University of Management Sciences `_, `Hangzhou Dianzi University `_, + `London South Bank University `_, `Taras Shevchenko National University Kiev `_, + `Bundeswehr University Munich `_, `University of Calcutta `_, `University of Kaiserslautern `_, + `Wuhan Textile University `_, `San Francisco State University `_, + `Anhui University of Science and Technology `_, `Boise State University `_, `Necmettin Erbakan University `_, `Shahrekord University `_, + `Shahrood University of Technology `_, + `Yangtze University `_, `Technical University of Cartagena `_, `Adolfo Ibáñez University `_, `Bundeswehr University Munich `_, `Universidad de Burgos `_, + `Shahrood University of Technology `_, `Dong A University `_, + `East China University of Science and Technology Shanghai `_, `Bauhaus-Universität Weimar `_, `Henan Institute of Economics and Trade `_ + `University of the Bundeswehr Munich `_, `National University of Defence Technology `_, `University of Applied Sciences and Arts Northwestern Switzerland `_, `University of Engineering and Management `_, -- > 30 national labs and research institutes, e.g., + `Pontifical Catholic University of Rio de Janeiro `_, + `Fujian Agriculture and Forestry University `_, + `Central South University of Forestry and Technology `_, + `Cho Chun Shik Graduate School of Mobility `_, + `Adama Science and Technology University `_, + `The University of Waikato `_, + `Lishui University `_, + `Westphalian University `_, + `Shanghai Jian Qiao University `_, + `Tel-Aviv University `_, +- > 40 national labs and research institutes, e.g., `Pacific Northwest National Laboratory `_, `Sandia National Laboratories `_, `Argonne National Laboratory `_, @@ -224,6 +276,16 @@ DeepXDE has been used in `Forschungszentrum Jülich `_, `China Ship Scientific Research Center `_, `Yanqi Lake Beijing Institute of Mathematical Sciences and Applications `_ + `Korea Institute of Fusion Energy `_, + `Fraunhofer Heinrich Hertz Institute `_, + `Northwest Institute of Nuclear Technology `_, + `Bay Area Environmental Research Institute `_, + `Lockheed Martin Solar and Astrophysics Laboratory `_, + `CSIRO, Space & Astronomy `_, + `Fujian Special Equipment Inspection and Research Institute `_, + `Centrale Lille Institute `_, + `Science and Technology Facilities Council Scientific Computing Department `_, + `Children’s Hospital of Philadelphia `_, - > 10 industry, e.g., `Anailytica `_, `Ansys `_, @@ -237,13 +299,152 @@ DeepXDE has been used in `Saudi Aramco `_, `Shell `_, `SoftServe `_, - `Quantiph `_ + `Quantiph `_, + `Moldex3D `_ Here is a list of research papers that used DeepXDE. If you would like your paper to appear here, open an issue in the GitHub "Issues" section. PINN ---- +#. L\. Yin & X. Lv. `Adapting physics-informed neural networks for bifurcation detection in ecological migration models `_. *arXiv preprint arXiv:2409.00651*, 2024. +#. K\.-L\. Lu, Y.-M. Su, Z. Bi, C. Qiu, & W.-J. Zhang. `Characteristic performance study on solving oscillator ODEs via soft-constrained physics-informed neural network with small data `_. *arXiv preprint arXiv:2408.11077*, 2024. +#. H\. Gangloff & N. Jouvin. `jinns: a JAX library for physics-informed neural networks `_. *arXiv preprint arXiv:2412.14132*, 2024. +#. M\. J. Choi. `Leveraging turbulence data with physics-informed neural networks `_. *arXiv preprint arXiv:2412.20130*, 2024. +#. P\. Kumar & R. Ranjan. `Evaluation of physics-informed machine learning approach for computation of fluid flows `_. *Proceedings of the 10th International and 50th National Conference on Fluid Mechanics and Fluid Power (FMFP), FMFP2023-FCS-395, December 20–22, IIT Jodhpur, Rajasthan, India*, 2024. +#. K\. Leng, M. Shankar, & J. Thiyagalingam. `Zero coordinate shift: Whetted automatic differentiation for physics-informed neural operators `_. *Journal of Computational Physics*, Volume 505, 112904, 2024. +#. R\. Fang, K. Zhang, K. Song, Y. Kai, Y. Li, & B. Zheng. `A deep learning method for solving thermoelastic coupling problem `_. *Zeitschrift für Naturforschung A*, 79(8), 851–871, 2024. +#. S\. Schoder. `Physics-informed neural networks for modal wave field predictions in 3D room acoustics `_. *Institute of Fundamentals and Theory in Electrical Engineering, Graz University of Technology, Inffeldgasse 18/I, 8010 Graz, Austria*, 2024. +#. L\. Vu-Quoc & A. Humer. `Partial-differential-algebraic equations of nonlinear dynamics by physics-informed neural-network: (I) Operator splitting and framework assessment `_. *Neural Methods in Engineering*, First published: 17 October, 2024. +#. A\. Noorizadegan, R. Cavoretto, D.L. Young, & C.S. Chen. `Stable weight updating: A key to reliable PDE solutions using deep learning `_. *Engineering Analysis with Boundary Elements*, Volume 168, 105933, 2024. +#. C\. Soyarslan & M. Pradas. `Physics-informed machine learning in asymptotic homogenization of elliptic equations `_. *Computer Methods in Applied Mechanics and Engineering*, Volume 427, Part 2, 117043, 2024. +#. A\. Fallah & M.M. Aghdam. `Physics-informed neural network for bending and free vibration analysis of three-dimensional functionally graded porous beam resting on elastic foundation `_. *Engineering with Computers*, 40, 437–454, 2024. +#. Y\. Wu, J. Guo, G. Gopalakrishna, & Z. Poulos. `Deep-MacroFin: Informed equilibrium neural network for continuous time economic models `_. *arXiv preprint arXiv:2408.10368*, 2024. +#. A\. Ogueda-Oliva & P. Seshaiyer. `Literate programming for motivating and teaching neural network-based approaches to solve differential equations `_. *International Journal of Mathematical Education in Science and Technology*, 55(2), 509–542, 2023. +#. A\. T. Deresse & T. T. Dufera. `Exploring physics-informed neural networks for the generalized nonlinear sine-Gordon equation `_. *Applied Computational Intelligence and Soft Computing*, 2024. +#. Y\. Gao, P. Xiao, & Z. Li. `Physics-informed neural networks for solving underwater two-dimensional sound field `_. *2024 OES China Ocean Acoustics (COA)*, pp. 1–4, 2024. +#. J\. Kurz, B. Bowman, M. Seman, et al. `A physics-informed kernel approach to learning the operator for parametric PDEs `_. *Neural Computing and Applications*, 36, 22773–22787, 2024. +#. A\. Newa, A. S. Gearhart, R. A. Darragh, & M. Villafañe-Delgado. `Physics-informed neural networks for scientific modeling: uses, implementations, and directions `_. *Artificial Intelligence and Machine Learning for Multi-Domain Operations Applications VI*, Vol. 13051, 130511J, 2024. +#. J\. Seo. `Past rewinding of fluid dynamics from noisy observation via physics-informed neural computing `_. *Phys. Rev. E*, 110(2), 025302, 2024. +#. S\. Mtshali, B. A. Jacobs. `Machine learning-based prediction of pharmacokinetic parameters for individualized drug dosage optimization `_. *Int. J. Inf. Tecnol.*, 2024. +#. W\. O. Pedruzzi, C. E. R. Dalla, W. B. D. Silva, D. Guimarães, V. A. Leão, J. C. S. Dutra. `Physics-Informed Neural Network for monitoring the sulfate ion adsorption process using particle filter `_. *An. Acad. Bras. Ciênc.*, 96(4), e20240262, 2024. +#. X\. Wang, M. Sun, Y. Guo, C. Yuan, X. Sun, Z. Wei, X. Jin. `Octree-based hierarchical sampling optimization for the volumetric super-resolution of scientific data `_. *Journal of Computational Physics*, Volume 502, 112804, 2024. +#. L\. Santos. `Deep and Physics-Informed Neural Networks as a Substitute for Finite Element Analysis `_. *ICMLT '24: Proceedings of the 2024 9th International Conference on Machine Learning Technologies*, Pages 84–90, 2024. +#. R\. C. Sotero, J. M. Sanchez-Bornot, I. Shaharabi-Farahani. `Parameter Estimation in Brain Dynamics Models from Resting-State fMRI Data using Physics-Informed Neural Networks `_. *bioRxiv*, 2024. +#. J\. Song, Z. Yan. `Data-driven 2D stationary quantum droplets and wave propagations in the amended GP equation with two potentials via deep neural networks learning `_. *arXiv preprint arXiv:2409.02339*, 2024. +#. B\. Bhaumik, S. De, S. Changdar. `Deep learning based solution of nonlinear partial differential equations arising in the process of arterial blood flow `_. *Mathematics and Computers in Simulation*, Volume 217, Pages 21–36, 2024. +#. Y\. Tong, S. Xiong, X. He, et al. `RoeNet: Predicting discontinuity of hyperbolic systems from continuous data `_. *Int J Numer Methods Eng*, 125(6), e7406, 2024. +#. H\. Kikumoto, Y. Wang, B. Zhang, H. Jia. `Enhanced Wind Velocity and Pressure Measurement Around Buildings Using Physics-Informed Neural Networks: A Case Study with a Two-Dimensional Urban Street Canyon `_. *Lecture Notes in Civil Engineering*, Volume 553. Springer, Singapore, 2025. +#. C\. B. Ribeiro. `Advanced Numerical Solution of Navier-Stokes Equations with Energy Conservation: A Physics-Informed Neural Networks Approach to Revolutionize Computational Fluid Dynamics `_. December 2024. +#. A\. A. Aghaei, M. M. Moghaddam, K. Parand. `PINNIES: An Efficient Physics-Informed Neural Network Framework to Integral Operator Problems `_. *arXiv preprint arXiv:2409.01899*, 2024. +#. L\. Shang, Y. Zhao, S. Zheng, J. Wang, T. Zhang, J. Wang. `Quantification of gradient energy coefficients using physics-informed neural networks `_. *International Journal of Mechanical Sciences*, Volume 273, 109210, 2024. +#. Z\. Hu, A. Yang, S. Xu, N. Li, Q. Wu, Y. Sun. `Prediction of soliton evolution and parameters evaluation for a high-order nonlinear Schrödinger–Maxwell–Bloch equation in the optical fiber `_. *Physics Letters A*, Volume 531, 130182, 2025. +#. N\. Alzhanov, E. Y. K. Ng, Y. Zhao. `Three-Dimensional Physics-Informed Neural Network Simulation in Coronary Artery Trees `_. *Fluids*, 9(7), 153, 2024. +#. M\. Mircea, D. Garlaschelli, S. Semrau. `Inference of dynamical gene regulatory networks from single-cell data with physics informed neural networks `_. *arXiv preprint arXiv:2401.07379*, 2024. +#. D\. Bonnet-Eymard, A. Persoons, M. Faes, D. Moens. `Separable Physics-Informed Neural Networks for Robust Inverse Quantification in Solid Mechanics `_. *International Symposium on Reliability Engineering and Risk Management (ISRERM)*, October 2024. +#. Z\.-Q. Zhang, et al. `Physics-Informed Neural Network Approaches in Quantum Simulations `_. *J. Phys.: Conf. Ser.*, 2891, 062023, 2024. +#. J\. R. Naujoks, A. Krasowski, M. Weckbecker, T. Wiegand, S. Lapuschkin, W. Samek, R. P. Klausen. `PINNfluence: Influence Functions for Physics-Informed Neural Networks `_. *arXiv preprint arXiv:2409.08958*, 2024. +#. C\. J. McDevitt, J. Arnaud, X. Z. Tang. `An Efficient Surrogate Model of Secondary Electron Formation and Evolution `_. *arXiv preprint arXiv:2412.13044*, 2024. +#. L\. Shang, Y. Zhao, S. Zheng, J. Wang, T. Zhang, J. Wang. `Quantification of gradient energy coefficients using physics-informed neural networks `_. *International Journal of Mechanical Sciences*, Volume 273, 109210, 2024. +#. Z\. Hu, A. Yang, S. Xu, N. Li, Q. Wu, Y. Sun. `Prediction of soliton evolution and parameters evaluation for a high-order nonlinear Schrödinger–Maxwell–Bloch equation in the optical fiber `_. *Physics Letters A*, Volume 531, 130182, 2025. +#. N\. Alzhanov, E. Y. K. Ng, Y. Zhao. `Three-Dimensional Physics-Informed Neural Network Simulation in Coronary Artery Trees `_. *Fluids*, 9(7), 153, 2024. +#. M\. Mircea, D. Garlaschelli, S. Semrau. `Inference of dynamical gene regulatory networks from single-cell data with physics informed neural networks `_. *arXiv preprint arXiv:2401.07379*, 2024. +#. D\. Bonnet-Eymard, A. Persoons, M. Faes, D. Moens. `Separable Physics-Informed Neural Networks for Robust Inverse Quantification in Solid Mechanics `_. *International Symposium on Reliability Engineering and Risk Management (ISRERM)*, October 2024. +#. Z\.-Q. Zhang, et al. `Physics-Informed Neural Network Approaches in Quantum Simulations `_. *J. Phys.: Conf. Ser.*, 2891, 062023, 2024. +#. J\. R. Naujoks, A. Krasowski, M. Weckbecker, T. Wiegand, S. Lapuschkin, W. Samek, R. P. Klausen. `PINNfluence: Influence Functions for Physics-Informed Neural Networks `_. *arXiv preprint arXiv:2409.08958*, 2024. +#. C\. J. McDevitt, J. Arnaud, X. Z. Tang. `An Efficient Surrogate Model of Secondary Electron Formation and Evolution `_. *arXiv preprint arXiv:2412.13044*, 2024. +#. Z\. Wu, L. J. Jiang, S. Sun, P. Li. `A Hard Constraint and Domain Decomposition Based Physics-Informed Neural Network Framework for Nonhomogeneous Transient Thermal Analysis `_. *IEEE Transactions on Components, Packaging and Manufacturing Technology*, 2024. +#. T\. Sahin, D. Wolff, M. von Danwitz, A. Popp. `Towards a Hybrid Digital Twin: Physics-Informed Neural Networks as Surrogate Model of a Reinforced Concrete Beam `_. *arXiv preprint arXiv:2405.08406*, 2024. +#. S\. Song, H. Jin. `Identifying constitutive parameters for complex hyperelastic materials using physics-informed neural networks `_. *Soft Matter*, 20(30), 5915–5926, 2024. +#. A\. Ahmad, A. Khan. `Pricing Rainbow Options Using Deep Learning `_. *Preprints*, 2024. +#. P\. Karnakov, S. Litvinov, P. Koumoutsakos. `Solving inverse problems in physics by optimizing a discrete loss: Fast and accurate learning without neural networks `_. *PNAS Nexus*, 3(1), pgae005, 2024. +#. T\. Sahin, D. Wolff, M. von Danwitz, A. Popp. `Towards a Hybrid Digital Twin: Fusing Sensor Information and Physics in Surrogate Modeling of a Reinforced Concrete Beam `_. *2024 Sensor Data Fusion: Trends, Solutions, Applications (SDF)*, Bonn, Germany, pp. 1–8, 2024. +#. A\. W. Corrêa do Lago, D. H. Braz de Sousa, P. H. Domingues, M. Daneker, L. Lu, H. V. H. Ayala. `Physics-informed and black-box identification of robotic actuator with a flexible joint `_. *IFAC-PapersOnLine*, 58(15), Pages 259–264, 2024. +#. W\. Hu, S. Zheng, C. Dong, M. Chen, J.-X. Fei, R. Gao. `High-Order Partial Differential Equations Solved by the Improved Self-Adaptive PINNs `_. *SSRN*, 2024. +#. T\. Zou, T. Yajima, Y. Kawajiri. `A parameter estimation method for chromatographic separation process based on physics-informed neural network `_. *Journal of Chromatography A*, Volume 1730, 465077, 2024. +#. H\. Mertens, F. Zhu. `Comparative Analysis of Uncertainty Quantification Models in Active Learning for Efficient System Identification of Dynamical Systems `_. *2024 IEEE 20th International Conference on Automation Science and Engineering (CASE)*, Bari, Italy, pp. 1869–1876, 2024. +#. H\. Zhang, L. Liu, L. Lu. `Federated scientific machine learning for approximating functions and solving differential equations with data heterogeneity `_. *arXiv preprint arXiv:2410.13141*, 2024. +#. C\. J. McDevitt, J. Arnaud, X.-Z. Tang. `A Physics-Constrained Deep Learning Treatment of Runaway Electron Dynamics `_. *arXiv preprint arXiv:2412.12980*, 2024. +#. W\. Quan, X. Ma, Z. Shang, K. Zhao, M. Su, Z. Dong. `Hybrid Physics-Data-Driven Model for Temperature Field Prediction of Asphalt Pavement Based on Physics-Informed Neural Network `_. *SSRN*, 2024. +#. S\. Savović, M. Ivanović, B. Drljača, A. Simović. `Numerical Solution of the Sine–Gordon Equation by Novel Physics-Informed Neural Networks and Two Different Finite Difference Methods `_. *Axioms*, 13(12), 872, 2024. +#. M\. Lamarque, L. Bhan, Y. Shi, M. Krstic. `Adaptive Neural-Operator Backstepping Control of a Benchmark Hyperbolic PDE `_. *arXiv preprint arXiv:2401.07862*, 2024. +#. C\.-E. Chiu, A. Roy, S. Cechnicka, A. Gupta, A. Levy Pinto, C. Galazis, K. Christensen, D. Mandic, M. Varela. `Physics-Informed Neural Networks can accurately model cardiac electrophysiology in 3D geometries and fibrillatory conditions `_. *arXiv preprint arXiv:2409.12712*, 2024. +#. A\. Niewiadomska, et al. `Modeling Tsunami Waves at the Coastline of Valparaiso Area of Chile with Physics Informed Neural Networks `_. In: Franco, L., de Mulatier, C., Paszynski, M., Krzhizhanovskaya, V.V., Dongarra, J.J., Sloot, P.M.A. (eds) Computational Science – ICCS 2024. Lecture Notes in Computer Science, vol 14833. Springer, Cham, 2024. +#. Y\. Chen, H. Yu, C. Liu, J. Xie, J. Han, H. Dai. `Synergistic fusion of physical modeling and data-driven approaches for parameter inference to enzymatic biodiesel production system `_. *Applied Energy*, Volume 373, 123874, 2024. +#. J\. Hayford, J. Goldman-Wetzler, E. Wang, L. Lu. `Speeding up and reducing memory usage for scientific machine learning via mixed precision `_. *Computer Methods in Applied Mechanics and Engineering*, Volume 428, 117093, 2024. +#. B\. Bhaumik, S. Changdar, S. Chakraverty, S. De. `Effects of viscosity and induced magnetic fields on weakly nonlinear wave transmission in a viscoelastic tube using physics-informed neural networks `_. *Physics of Fluids*, 36(12), 121902, 2024. +#. J\. Li, Y. Lin, K. Zhang. `Dynamic mode decomposition of the core surface flow inverted from geomagnetic field models `_. *Geophysical Research Letters*, 51, e2023GL106362, 2024. +#. T\. Sahin, M. von Danwitz, A. Popp. `Solving forward and inverse problems of contact mechanics using physics-informed neural networks `_. *Advances in Modeling and Simulation in Engineering Sciences*, 11, 11, 2024. +#. V\. Kungurtsev, Y. Peng, J. Gu, S. Vahidian, A. Quinn, F. Idlahcen, Y. Chen. `Dataset Distillation from First Principles: Integrating Core Information Extraction and Purposeful Learning `_. *arXiv preprint arXiv:2409.01410*, 2024. +#. J\. H. Harmening, F. Pioch, L. Fuhrig, et al. `Data-assisted training of a physics-informed neural network to predict the separated Reynolds-averaged turbulent flow field around an airfoil under variable angles of attack `_. *Neural Computing and Applications*, 36, 15353–15371, 2024. +#. J\. Duan, H. Zhao, J. Song. `Spatial domain decomposition-based physics-informed neural networks for practical acoustic propagation estimation under ocean dynamics `_. *Journal of the Acoustical Society of America*, 155(5), 3306–3321, 2024. +#. S\. Changdar, B. Bhaumik, N. Sadhukhan, S. Pandey, S. Mukhopadhyay, S. De, S. Bakalis. `A Hybridized Approach on Physics-Informed Neural Networks and Symbolic Regression for Simulating Nonlinear Wave Dynamics in Arterial Blood Flow `_. *SSRN*, 2024. +#. S\. K. Vemuri, T. Büchner, J. Denzler. `Estimating Soil Hydraulic Parameters for Unsaturated Flow Using Physics-Informed Neural Networks `_. *Springer, Cham*, Volume 14834, 2024. +#. W\. Wu, M. Daneker, C. Herz, H. Dewey, J. A. Weiss, A. M. Pouch, L. Lu, M. A. Jolley. `ADEPT: A Noninvasive Method for Determining Elastic Properties of Valve Tissue `_. *arXiv preprint arXiv:2409.19081*, 2024. +#. S\. Changdar, B. Bhaumik, N. Sadhukhan, S. Pandey, S. Mukhopadhyay, S. De, S. Bakalis. `Integrating symbolic regression with physics-informed neural networks for simulating nonlinear wave dynamics in arterial blood flow `_. *Physics of Fluids*, 36(12), 121924, 2024. +#. M\. Y. Hosseini, Y. Shiri. `Flow field reconstruction from sparse sensor measurements with physics-informed neural networks `_. *Physics of Fluids*, 36(7), 073606, 2024. +#. B\. Jang, A. A. Kaptanoglu, R. Gaur, S. Pan, M. Landreman, W. Dorland. `Grad–Shafranov equilibria via data-free physics informed neural networks `_. *Phys. Plasmas*, 31(3), 032510, 2024. +#. H\.-Q. Yang, C. Shi, L. Zhang. `Ensemble learning of soil–water characteristic curve for unsaturated seepage using physics-informed neural networks `_. *Soils and Foundations*, 65(1), 101556, 2025. +#. M\. Peng, H. Tang, Y. Kou. `Adversarial and self-adaptive domain decomposition physics-informed neural networks for high-order differential equations with discontinuities `_. *SSRN*, 2024. +#. H\. Wang, G. Fang, B. Gao, B. Wang, S. Meng. `Inversion of spatially distributed elastic moduli of 2.5D woven composites based on DIC strain field using PINN method `_. *SSRN Electronic Journal*, 2024. +#. L\. Novák, H. Sharma, M. D. Shields. `Physics-informed polynomial chaos expansions `_. *Journal of Computational Physics*, Volume 506, 112926, 2024. +#. J\.-M. Tucny, M. Durve, A. Montessori, S. Succi. `Learning of viscosity functions in rarefied gas flows with physics-informed neural networks `_. *Computers & Fluids*, Volume 269, 106114, 2024. +#. J\.-J. Zhang, N. Cheng, F\.-P. Li, X\.-C. Wang, J\.-N. Chen, L\.-G. Pang, D. Meng. `Symmetry Breaking in Neural Network Optimization: Insights from Input Dimension Expansion `_. *arXiv preprint arXiv:2409.06402*, 2024. +#. D\. Sitalo, A. Ogueda-Oliva, P. Seshaiyer. `Data-Driven Mathematical Modeling and Simulation of Migration Dynamics During the Russian-Ukrainian War `_. *Spora: A Journal of Biomathematics*, Vol. 10, 83–90, 2024. +#. J\. Seo. `Solving real-world optimization tasks using physics-informed neural computing `_. *Sci Rep*, 14, 202, 2024. +#. J\. Zhao, Z. Tian, X. Zhang, Z. Duan, J. Lu. `Kinetics Parameter Identification of Chain Shuttling Polymerization Based on Physics-Informed Neural Networks `_. *IFAC-PapersOnLine*, 58(14), 184–191, 2024. +#. K\. Yuan, C. Bauinger, X. Zhang, P. Baehr, M. Kirchhart, D. Dabert, A. Tousnakhoff, P. Boudier, M. Paulitsch. `Fully-fused Multi-Layer Perceptrons on Intel Data Center GPUs `_. *arXiv preprint arXiv:2403.17607*, 2024. +#. Z\. Huang, L. An, Y. Ye, X. Wang, H. Cao, Y. Du, M. Zhang. `A broadband modeling method for range-independent underwater acoustic channels using physics-informed neural networks `_. *J. Acoust. Soc. Am.*, 156(5), 3523–3533, 2024. +#. P\. Xiao, M. Zheng, A. Jiao, X. Yang, L. Lu. `Quantum DeepONet: Neural operators accelerated by quantum computing `_. *arXiv preprint arXiv:2409.15683*, 2024. +#. Y\. Yang, P. He, X. Peng, Q. He. `A number-theoretic method sampling neural network for solving partial differential equations `_. *arXiv preprint arXiv:2411.17039*, 2025. +#. J\. Cho, S. Nam, H. Yang, S\.-B. Yun, Y. Hong, E. Park. `Separable Physics-Informed Neural Networks `_. *Advances in Neural Information Processing Systems*, 36, 23761–23788, 2023. +#. C\. Galazis, C\.-E. Chiu, T. Arichi, A\. A. Bharath, M. Varela. `PINNing Cerebral Blood Flow: Analysis of Perfusion MRI in Infants using Physics-Informed Neural Networks `_. *arXiv preprint arXiv:2410.19759*, 2024. +#. W\. Hu. `A new method to solve the forward and inverse problems for the spatial Solow model by using Physics Informed Neural Networks (PINNs) `_. *Engineering Analysis with Boundary Elements*, 169(Part B), 106013, 2024. +#. X\. Wang, C. Luo, D. Jiang, H. Wang, Z. Wang. `Improved design method for gas carburizing process through data-driven and physical information `_. *Computational Materials Science*, Volume 247, 113507, 2025. +#. M\. Xie, X. Zhao, D. Zhao, J. Fu, C. Shelton, B. Semlitsch. `Predicting bifurcation and amplitude death characteristics of thermoacoustic instabilities from PINNs-derived van der Pol oscillators `_. *Journal of Fluid Mechanics*, 998, A46, 2024. +#. A\. Serebrennikova, R. Teubler, L. Hoffellner, E. Leitner, U. Hirn, K. Zojer. `Physics informed neural networks reveal valid models for reactive diffusion of volatiles through paper `_. *Chemical Engineering Science*, Volume 285, 119636, 2024. +#. C\.A. Molina Catricheo, F. Lambert, J. Salomon, et al. `Modeling global surface dust deposition using physics-informed neural networks `_. *Communications Earth & Environment*, 5, 778, 2024. +#. N\. Patel, A. Aykutalp, P. Laguna. `Calculating Quasi-Normal Modes of Schwarzschild Black Holes with Physics Informed Neural Networks `_. *arXiv preprint arXiv:2401.01440*, 2024. +#. A\. Deresse, T. Dufera. `A deep learning approach: Physics-informed neural networks for solving the 2D nonlinear Sine–Gordon equation `_. *Results in Applied Mathematics*, 25, 2024. +#. C\. Kou, Y. Yin, Y. Zeng, S. Jia, Y. Luo, X. Yuan. `Physics-informed neural network integrate with unclosed mechanism model for turbulent mass transfer `_. *Chemical Engineering Science*, Volume 288, 119752, 2024. +#. N\. Patel, A. Aykutalp, P. Laguna. `Novel approach to solving Schwarzschild black hole perturbation equations via physics informed neural networks `_. *Gen Relativ Gravit*, 56, 137, 2024. +#. Z\. Zhang, J.-H. Lee, L. Sun, G. X. Gu. `Weak-formulated physics-informed modeling and optimization for heterogeneous digital materials `_. *PNAS Nexus*, 3(5), pgae186, May 2024. +#. A\. Jesser, K. Krycki, R. G. McClarren, & M. Frank. `Numerical Robustness of PINNs for Multiscale Transport Equations `_. *arXiv preprint arXiv:2412.14683*, 2024. +#. H\. Wu, H. Luo, Y. Ma, J. Wang, & M. Long. `RoPINN: Region Optimized Physics-Informed Neural Networks `_. *arXiv preprint arXiv:2405.14369*, 2024. +#. Y\. Zhao, Y. Fei, R. P. Singh, & D. Fu. `Experimental and Numerical Simulation of the High Hydrological Performance of Root-Zone Mixture in Sports Turf `_. *SSRN*, 2024. +#. B\. Ahmed, Y. Qiu, D. W. Abueidda, W. El-Sekelly, B. Garcia de Soto, T. Abdoun, & M. E. Mobasher. `Physics-informed DeepONet with stiffness-based loss functions for structural response prediction `_. *arXiv preprint arXiv:2409.00994*, 2024. +#. H\. Wang, Y. Pu, S. Song, & G. Huang. `Physics-informed Dynamics Representation Learning for Parametric PDEs `_. *OpenReview*, 2024. +#. R\. Casado-Vara, M. Severt, A. Díaz-Longueira, Á. M. Rey, & J. L. Calvo-Rolle. `Dynamic Malware Mitigation Strategies for IoT Networks: A Mathematical Epidemiology Approach `_. *Mathematics*, 12(2), 250, 2024. +#. E\. Raeisi, M. Yavuz, M. Khosravifarsani, Y. Fadaei. `Mathematical modeling of interactions between colon cancer and immune system with a deep learning algorithm `_. *Eur. Phys. J. Plus*, 139(4), 345, 2024. +#. J\. Song & Z. Yan. `Data-driven 2D stationary quantum droplets and wave propagations in the amended GP equation with two potentials via deep neural networks learning `_. *arXiv preprint*, arXiv:2409.02339, 2024. +#. J\. J. Athalathil, B. Vaidya, S. Kundu, V. Upendran & M. C. M. Cheung. `Surface Flux Transport Modeling Using Physics-informed Neural Networks `_. *The Astrophysical Journal*, 975(2), 258, 2024. +#. A\. A. Aghaei, M. M. Moghaddam & K. Parand. `PINNIES: An Efficient Physics-Informed Neural Network Framework to Integral Operator Problems `_. *arXiv preprint*, arXiv:2409.01899, 2024. +#. B\. Ahmed, Y. Qiu, D. W. Abueidda, W. El-Sekelly, B. G. de Soto, T. Abdoun & M. E. Mobasher. `Physics-informed DeepONet with stiffness-based loss functions for structural response prediction `_. *arXiv preprint*, arXiv:2409.00994, 2024. +#. L\. Yin & X. Lv. `Adapting Physics-Informed Neural Networks for Bifurcation Detection in Ecological Migration Models `_. *arXiv preprint*, arXiv:2409.00651, 2024. +#. L\. Shang, S. Zheng, J. Wang & J. Wang. `Physics-informed neural networks incorporating energy dissipation for the phase-field model of ferroelectric microstructure evolution `_. *arXiv preprint*, arXiv:2409.02959, 2024. +#. K\.-L. Lu, Y\.-M. Su, C. Qiu, Z. Bi & W\.-J. Zhang. `Solving Oscillator ODEs via Soft-constrained Physics-informed Neural Network with Small Data `_. *arXiv e-prints*, arXiv:2408, 2024. +#. Y\. Wu, J. Guo, G. Gopalakrishna & Z. Poulos. `Deep-MacroFin: Informed Equilibrium Neural Network for Continuous Time Economic Models `_. *arXiv preprint*, arXiv:2408.10368, 2024. +#. J\. Seo. `Past rewinding of fluid dynamics from noisy observation via physics-informed neural computing `_. *Physical Review E*, 110(2), 025302, 2024. +#. L\. Vu-Quoc & A. Humer. `Partial-differential-algebraic equations of nonlinear dynamics by physics-informed neural-network: (I) Operator splitting and framework assessment `_. *International Journal for Numerical Methods in Engineering*, 125(24), e7586, 2024. +#. Z\. Xiong, Y. Jiang, W. Lu, X. Wang & T. Tian. `Reconstructing and Forecasting Marine Dynamic Variable Fields across Space and Time Globally and Gaplessly `_. *arXiv preprint*, arXiv:2408.01509, 2024. +#. J\. H. Adler, S. Hocking, X. Hu & S. Islam. `Physics-informed nonlinear vector autoregressive models for the prediction of dynamical systems `_. *arXiv preprint*, arXiv:2407.18057, 2024. +#. H\. Kikumoto, Y. Wang, B. Zhang & H. Jia. `Enhanced Wind Velocity and Pressure Measurement Around Buildings Using Physics-Informed Neural Networks: A Case Study with a Two-Dimensional Urban Street Canyon `_. *International Association of Building Physics*, pp. 390-396, 2024. +#. Y\. Chen, H. Yu, C. Liu, J. Xie, J. Han & H. Dai. `Synergistic fusion of physical modeling and data-driven approaches for parameter inference to enzymatic biodiesel production system `_. *Applied Energy*, 373, 123874, 2024. +#. A\. Noorizadegan, R. Cavoretto, D. L. Young & C. S. Chen. `Stable weight updating: A key to reliable PDE solutions using deep learning `_. *Engineering Analysis with Boundary Elements*, 168, 105933, 2024. +#. D\. Nguyen. `Advanced modeling of the childbirth system using different deep learning methods: from fetal skeleton segmentation to real-time soft tissue deformation `_. PhD thesis, Centrale Lille Institut, 2024. +#. A\. Jiao, Q. Yan, J. Harlim & L. Lu. `Solving forward and inverse PDE problems on unknown manifolds via physics-informed neural operators `_. *arXiv preprint*, arXiv:2407.05477, 2024. +#. M\. Y. Hosseini & Y. Shiri. `Flow field reconstruction from sparse sensor measurements with physics-informed neural networks `_. *Physics of Fluids*, 36(7), 2024. +#. N\. Alzhanov, E. Y. K. Ng & Y. Zhao. `Three-Dimensional Physics-Informed Neural Network Simulation in Coronary Artery Trees `_. *Fluids*, 9(7), 153, 2024. +#. S\. Sripada, A. U. Gaitonde, J. A. Weibel & A. M. Marconnet. `Robust inverse parameter fitting of thermal properties from the laser-based Ångstrom method in the presence of measurement noise using physics-informed neural networks (PINNs) `_. *Journal of Applied Physics*, 135(22), 2024. +#. T\. Zou, T. Yajima & Y. Kawajiri. `A parameter estimation method for chromatographic separation process based on physics-informed neural network `_. *Journal of Chromatography A*, 465077, 2024. +#. H\. Wang, G. Fang, B. Gao, B. Wang & S. Meng. `Inversion of Spatially Distributed Elastic Moduli of 2.5D Woven Composites Based on DIC Strain Field Using PINN Method `_. *SSRN preprint*, 4851306, 2024. +#. H\. Lu, Q. Wang, W. Tang & H. Liu. `Physics-informed neural networks for fully non-linear free surface wave propagation `_. *Physics of Fluids*, 36(6), 2024. +#. N\. Jha & E. Mallik. `GPINN with Neural Tangent Kernel Technique for Nonlinear Two Point Boundary Value Problems `_. *Neural Processing Letters*, 56(3), 192, 2024. +#. Y\. Gao, P. Xiao & Z. Li. `Physics-Informed Neural Networks for Solving Underwater Two-dimensional Sound Field `_. *2024 OES China Ocean Acoustics (COA)*, pp. 1-4, IEEE, 2024. +#. N\. Jha & E. Mallik. `Gradient-based adaptive neural network technique for two-dimensional local fractional elliptic PDEs `_. *Physica Scripta*, 2024. +#. R\. Fang, K. Zhang, K. Song, Y. Kai, Y. Li & B. Zheng. `A deep learning method for solving thermoelastic coupling problem `_. *Zeitschrift für Naturforschung A*, 2024. +#. J\. H. Harmening, F. Pioch, L. Fuhrig, F.-J. Peitzmann, D. Schramm & O. el Moctar. `Data-assisted training of a physics-informed neural network to predict the separated Reynolds-averaged turbulent flow field around an airfoil under variable angles of attack `_. *Neural Computing and Applications*, pp. 1-19, 2024. +#. T\. Sahin, D. Wolff, M. von Danwitz & A. Popp. `Towards a Hybrid Digital Twin: Physics-Informed Neural Networks as Surrogate Model of a Reinforced Concrete Beam `_. *arXiv preprint*, arXiv:2405.08406, 2024. #. S\. K. Vemuri, T. Büchner, & J. Denzler. `Estimating soil hydraulic parameters for unsaturated flow using physics-informed neural networks `_. In *International Conference on Computational Science*, 338-351, Cham: Springer Nature Switzerland, 2024, June. #. N\. A. Niewiadomska, P. Maczuga, A. Oliver-Serra, L. Siwik, P. Sepulveda-Salaz, A. Paszyńska, M. Paszyński, & K. Pingali. `Modeling tsunami waves at the coastline of Valparaiso area of Chile with physics informed neural networks `_. In *International Conference on Computational Science*, 204-218, Cham: Springer Nature Switzerland, 2024, June. #. N\. Alzhanov, E. Y. K. Ng, & Y. Zhao. `Three-dimensional physics-informed neural network simulation in coronary artery trees `_. *Fluids*, 9(7), 2024. @@ -465,6 +666,24 @@ PINN Deep neural operators -------- +#. J\. He, D. Pal, A. Najafi, et al. `Material-Response-Informed DeepONet and Its Application to Polycrystal Stress–Strain Prediction in Crystal Plasticity `_. *JOM*, 76, 5744–5754, 2024. +#. A\. Jiao, Q. Yan, J. Harlim, & L. Lu. `Solving forward and inverse PDE problems on unknown manifolds via physics-informed neural operators `_. *arXiv preprint arXiv:2407.05477*, 2024. +#. J\. Park, & N. Kang. `Point-DeepONet: A Deep Operator Network Integrating PointNet for Nonlinear Analysis of Non-Parametric 3D Geometries and Load Conditions `_. *arXiv preprint arXiv:2412.18362*, 2024. +#. K\. Lv, J. Wang, Y. Zhang, & H. Yu. `Neural Operators for Adaptive Control of Freeway Traffic `_. *arXiv preprint arXiv:2410.20708*, 2024. +#. Z\. Li, H. Zheng, N. Kovachki, D. Jin, H. Chen, B. Liu, K. Azizzadenesheli, & A. Anandkumar. `Physics-Informed Neural Operator for Learning Partial Differential Equations `_. *Association for Computing Machinery*, 1(3), September 2024. +#. C\. García-Cervera, M. Kessler, P. Pedregal, & F. Periago. `Universal approximation of set-valued maps and DeepONet approximation of the controllability map `_. *ResearchGate*, December 2024. +#. J\. He, S. Koric, D. Abueidda, A. Najafi, & I. Jasiuk. `Geom-DeepONet: A point-cloud-based deep operator network for field predictions on 3D parameterized geometries `_. *Computer Methods in Applied Mechanics and Engineering*, Volume 429, 117130, 2024. +#. M\. Lamarque, L. Bhan, R. Vazquez, & M. Krstic. `Gain Scheduling with a Neural Operator for a Transport PDE with Nonlinear Recirculation `_. *arXiv preprint arXiv:2401.02511*, 2024. +#. S\. Kushwaha, J. Park, S. Koric, J. He, I. Jasiuk, & D. Abueidda. `Advanced deep operator networks to predict multiphysics solution fields in materials processing and additive manufacturing `_. *Additive Manufacturing*, Volume 88, 104266, 2024. +#. O\. Ovadia, A. Kahana, P. Stinis, E. Turkel, D. Givoli, & G. E. Karniadakis. `ViTO: Vision Transformer-Operator `_. *Computer Methods in Applied Mechanics and Engineering*, Volume 428, 117109, 2024. +#. Z\. Jiang, M. Zhu, & L. Lu. `Fourier-MIONet: Fourier-enhanced multiple-input neural operators for multiphase modeling of geological carbon sequestration `_. *Reliability Engineering & System Safety*, Volume 251, 110392, 2024. +#. Q\. Meng, Y. Li, Z. Deng, X. Liu, G. Chen, Q. Wu, C. Liu, & X. Hao. `A general reduced-order neural operator for spatio-temporal predictive learning on complex spatial domains `_. *arXiv preprint arXiv:2409.05508*, 2024. +#. A\. A. Aghaei, M. M. Moghaddam, & K. Parand. `PINNIES: An Efficient Physics-Informed Neural Network Framework to Integral Operator Problems `_. *arXiv preprint arXiv:2409.01899*, 2024. +#. K\. Lv, J. Wang, & Y. Cao. `Neural Operator Approximations for Boundary Stabilization of Cascaded Parabolic PDEs `_. *International Journal of Adaptive Control and Signal Processing*, Wiley Online Library, 2024. +#. B\. Ahmed, Y. Qiu, D. W. Abueidda, W. El-Sekelly, B. G. de Soto, T. Abdoun, & M. E. Mobasher. `Physics-informed DeepONet with stiffness-based loss functions for structural response prediction `_. *arXiv preprint arXiv:2409.00994*, 2024. +#. P\. Gao, G. E. Karniadakis, & P. Stinis. `Multiscale modeling framework of a constrained fluid with complex boundaries using twin neural networks `_. *arXiv preprint arXiv:2408.03263*, 2024. +#. A\. Jiao, Q. Yan, J. Harlim, & L. Lu. `Solving forward and inverse PDE problems on unknown manifolds via physics-informed neural operators `_. *arXiv preprint arXiv:2407.05477*, 2024. +#. L\. Xiao, G. Mei, & N. Xu. `Knowledge-integrated deep learning for predicting stochastic thermal regime of embankment in permafrost region `_. *Journal of Rock Mechanics and Geotechnical Engineering*, Elsevier, 2024. #. A\. Jiao, Q. Yan, J. Harlim, & L. Lu. `Solving forward and inverse PDE problems on unknown manifolds via physics-informed neural operators `_. *arXiv preprint arXiv:2407.05477v1*, 2024. #. G\. Fabiani, I. G. Kevrekidis, C. Siettos, & A. N. Yannacopoulos. `RandONet: Shallow-networks with random projections for learning linear and nonlinear operators `_. *Computer Methods in Applied Mechanics and Engineering*, 429:117130, 2024. #. A\. Jiao, H. He, R. Ranade, J. Pathak, & L. Lu. `One-shot learning for solution operators of partial differential equations `_. *arXiv preprint arXiv:2104.05512*, 2024.