-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathMakefile
101 lines (68 loc) · 2.28 KB
/
Makefile
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
default: pylint
pylint:
find . -iname "*.py" -not -path "./tests/*" | xargs -n1 -I {} pylint --output-format=colorized {}; true
# ----------------------------------
# LOCAL SET UP
# ----------------------------------
run_locally:
@python -W ignore -m SimpleTaxiFare.trainer
install_requirements:
@pip install -r requirements.txt
# ----------------------------------
# LOCAL INSTALL COMMANDS
# ----------------------------------
install:
@pip install . -U
clean:
@rm -fr */__pycache__
@rm -fr __init__.py
@rm -fr build
@rm -fr dist
@rm -fr SimpleTaxiFare-*.dist-info
@rm -fr SimpleTaxiFare.egg-info
-@rm model.joblib
### GCP configuration - - - - - - - - - - - - - - - - - - -
# /!\ you should fill these according to your account
### GCP Project - - - - - - - - - - - - - - - - - - - - - -
# not required here
PROJECT_ID=crypto-resolver-307909
### GCP Storage - - - - - - - - - - - - - - - - - - - - - -
BUCKET_NAME= 'wagon-mln-ndabagera'
##### Data - - - - - - - - - - - - - - - - - - - - - - - -
# not required here
##### Training - - - - - - - - - - - - - - - - - - - - - -
# will store the packages uploaded to GCP for the training
BUCKET_TRAINING_FOLDER = 'trainings'
##### Model - - - - - - - - - - - - - - - - - - - - - - - -
# not required here
### GCP AI Platform - - - - - - - - - - - - - - - - - - - -
##### Machine configuration - - - - - - - - - - - - - - - -
REGION=europe-west1
PYTHON_VERSION=3.7
FRAMEWORK=scikit-learn
RUNTIME_VERSION=2.4
##### Package params - - - - - - - - - - - - - - - - - - -
PACKAGE_NAME=TaxiFareModelAdvanced
FILENAME=trainer
##### Job - - - - - - - - - - - - - - - - - - - - - - - - -
JOB_NAME=taxi_fare_training_pipeline_$(shell date +'%Y%m%d_%H%M%S')
run_locally:
@python -m ${PACKAGE_NAME}.${FILENAME}
gcp_submit_training:
gcloud ai-platform jobs submit training ${JOB_NAME} \
--job-dir gs://${BUCKET_NAME}/${BUCKET_TRAINING_FOLDER} \
--package-path ${PACKAGE_NAME} \
--module-name ${PACKAGE_NAME}.${FILENAME} \
--python-version=${PYTHON_VERSION} \
--runtime-version=${RUNTIME_VERSION} \
--region ${REGION} \
--stream-logs
clean:
@rm -f */version.txt
@rm -f .coverage
@rm -fr */__pycache__ __pycache__
@rm -fr build dist *.dist-info *.egg-info
@rm -fr */*.pyc
## uvicorn
run_api:
uvicorn api.fast:app --reload