-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathsimulation.py
367 lines (288 loc) · 13 KB
/
simulation.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
# -*- coding: utf-8 -*-
"""
Created on Tue Apr 21 22:50:49 2015
@author: akl
"""
import nest
import numpy as np
import arena
import network
import results
import motion
import evolution as ev
import learning
x_init = 195
y_init = 165
theta_init = 1.981011
t_step = 100.0
n_step = 400
def create_empty_data_lists():
"""
Create dict of empty lists to store simulation data in."""
data = [[] for _ in range(12)]
return {'traj':data[0], 'pixel_values': data[1], 'speed_log': data[2],
'desired_speed_log': data[3], 'motor_fr': data[4],
'linear_velocity_log': data[5], 'angular_velocity_log': data[6],
'voltmeter_data': data[7], 'rctr_nrn_trace': data[8],
'nrn_nrn_trace': data[9], 'reward': data[10], 'weights': data[11]}
def simulate_learning(neurons, receptors, nrns_sd, rctrs_sd, arena):
"""
Run simulation for 40 seconds based on network topology encoded in
individual.
@param individual: Binary string encoding network topology.
@param arena: The arena object in which the simulation is carried
out.
@param n_step: Number of steps the simulation is divided in.
@param t_step: Number of milliseconds in each step.
@param reset: bool triggering the reset of the nest kernel.
"""
global simtime
simdata = create_empty_data_lists()
if data['init'] == 'random':
simdata['x_init'], simdata['y_init'], theta_init = \
select_random_pose(arena)
x_cur = simdata['x_init']
y_cur = simdata['y_init']
theta_cur = theta_init
err_l, err_r = 0, 0
simdata['rctr_nrn_trace'].append(np.zeros((18, 10)))
simdata['nrn_nrn_trace'].append(np.zeros((10, 10)))
motor_spks = nrns_sd[6:]
for t in range(n_step):
ev.update_refratory_perioud()
simdata['traj'].append((x_cur, y_cur))
px = network.set_receptors_firing_rate(x_cur, y_cur, theta_cur,
err_l, err_r)
simdata['pixel_values'].append(px)
# Run simulation for time-step
nest.Simulate(t_step)
simtime += t_step
motor_firing_rates = network.get_motor_neurons_firing_rates(motor_spks)
v_l_act, v_r_act, v_t, w_t, err_l, err_r, col, v_l_des, v_r_des = \
motion.update_wheel_speeds(x_cur, y_cur, theta_cur, motor_firing_rates)
# Save dsired and actual speeds
simdata['speed_log'].append((v_l_act, v_r_act))
simdata['desired_speed_log'].append((v_l_des, v_r_des))
# Save motor neurons firing rates
simdata['motor_fr'].append(motor_firing_rates)
# Save linear and angualr velocities
simdata['linear_velocity_log'].append(v_t)
simdata['angular_velocity_log'].append(w_t)
# Move robot according to the read-out speeds from motor neurons
x_cur, y_cur, theta_cur = motion.move(x_cur, y_cur, theta_cur, v_t,
w_t)
nrns_st, rctrs_st = learning.get_spike_times(nrns_sd, rctrs_sd)
rec_nrn_tags, nrn_nrn_tags, rctr_t, nrn_t, pt = \
learning.get_eligibility_trace(nrns_st, rctrs_st, simtime,
simdata['rctr_nrn_trace'][t], simdata['nrn_nrn_trace'][t])
print simtime
simdata['rctr_nrn_trace'].append(rec_nrn_tags)
simdata['nrn_nrn_trace'].append(nrn_nrn_tags)
# Stop simulation if collision occurs
if col:
simdata['speed_log'].extend((0, 0) for k in range(t, 400))
break
simdata['fitness'] = ev.get_fitness_value(simdata['speed_log'])
return simdata, rctr_t, nrn_t, pt, col
def simulate_evolution(individual, arena, n_step, t_step, reset=True):
"""
Run simulation for 40 seconds based on network topology encoded in
individual.
@param individual: Binary string encoding network topology.
@param arena: The arena object in which the simulation is carried
out.
@param n_step: Number of steps the simulation is divided in.
@param t_step: Number of milliseconds in each step.
@param reset: bool triggering the reset of the nest kernel.
"""
# Reset nest kernel just in case it was not reset & adjust
# resolution.
nest.ResetKernel()
nest.SetKernelStatus({'resolution': 1.0, 'local_num_threads': 4})
nest.set_verbosity('M_ERROR')
if data['init'] == 'random':
x, y, theta = select_random_pose(arena)
simdata = create_empty_data_lists()
simdata['x_init'] = x_init
simdata['y_init'] = y_init
simdata['theta_init'] = theta_init
motor_spks = network.create_evolutionary_network(individual, data['model'])
x_cur = x_init
y_cur = y_init
theta_cur = theta_init
err_l, err_r = 0, 0
for t in range(n_step):
# Save current position in trajectory list
simdata['traj'].append((x_cur, y_cur))
# Add nioise to
network.update_refratory_perioud(data['model'])
# Set receptors' firing probability
px = network.set_receptors_firing_rate(x_cur, y_cur, theta_cur,
err_l, err_r, arena)
simdata['pixel_values'].append(px)
# Run simulation for 100 ms
nest.Simulate(t_step)
motor_firing_rates = network.get_motor_neurons_firing_rates(motor_spks)
# Get desired and actual speeds
col, speed_dict = motion.update_wheel_speeds(x_cur, y_cur, theta_cur,
motor_firing_rates, t_step,
arena)
# Stop simulation if collision occurs
if col:
simdata['speed_log'].extend((0, 0) for k in range(t, 400))
break
# Save simulation data
simdata['speed_log'].append((speed_dict['actual_left'],
speed_dict['actual_right']))
simdata['desired_speed_log'].append((speed_dict['desired_left'],
speed_dict['desired_right']))
simdata['motor_fr'].append(motor_firing_rates)
simdata['linear_velocity_log'].append(speed_dict['linear'])
simdata['angular_velocity_log'].append(speed_dict['angular'])
# Move robot according to the read-out speeds from motor neurons
x_cur, y_cur, theta_cur = motion.move(x_cur, y_cur, theta_cur,
speed_dict['linear'], speed_dict['angular'], t_step/1000.)
# Calculate individual's fitness value
simdata['fitness'] = ev.get_fitness_value(simdata['speed_log'])
# Get average number of spikes per second for each neuron
simdata['average_spikes'] = network.get_average_spikes_per_second()
# Get Voltmeter data
simdata['voltmeter_data'] = network.get_voltmeter_data()
if reset:
nest.ResetKernel()
return simdata
def select_random_pose(arena):
"""
Choose an initial random pose in the arena that is at least 50 mm
away from the walls.
@param arena: The arena object in which the simulation is carried
out.
"""
x = np.random.randint(50, arena.maximum_length() - 50)
y = np.random.randint(50, arena.maximum_width() - 50)
theta = np.pi*np.random.rand()
return x, y, theta
def update_elite():
"""
Keep track of the best performing individual throughout the whole
simulation.
"""
global elite, fitness, traj, individual, speed_log
if fitness > elite[1]:
elite[0] = individual
elite[1] = fitness
def plot_results(average_fitness, elite):
"""
Call all plotting functions.
@param average_fitness: Average fitness per generation for each
population.
@param elite: Tuple comprising best evolved individual's details.
"""
results.plot_average_fitness_evolution(average_fitness)
results.plot_average_vs_best_fitness(average_fitness)
def get_simulation_details():
"""Get simulation specifications from the user."""
data = {}
mode = input(">>>Select Mode<<<\n[1] Evolution\n[2] Learning\n")
mode = 'evolution' if mode == 1 else 'learning'
data['mode'] = mode
arena_no = input(">>>Select Arena<<<\n[1] Arena 1 (687x371)\n[2] Arena 2 \
(500x270)\n[3] Arena 3 (800x432)\n")
data['arena'] = arena_no
ar = arena.arena(arena_no)
model = input(">>>Select Neuronal Model<<<\n[1] Multi-timescale Adaptive \
Threshold (MAT)\n[2] Leaky Intergate and Fire (LIF)\n")
model = 'mat' if model == 1 else 'iaf'
data['model'] = model
init = input(">>>Select Input Pose<<<\n[1] Random\n[2] Fixed\n")
init = 'random' if init == 1 else 'fixed'
data['init'] = init
if init == 'fixed':
x = input(">>> Enter initial X-Position (max %d)<<<\n"""\
% ar.maximum_length())
y = input(">>>Enter initial Y-Position (max %d)<<<\n"""\
% ar.maximum_width())
theta = input(">>>Enter initial orientation angle<<<\n")
data['x_init'] = x
data['y_init'] = y
data['theta_init'] = theta
if mode == 'evolution':
# Evolution
pop_id = input(">>>Select Population id<<<\n[1] Population 1\n[2] \
Population 2\n[3] Population 3\n")
data['population'] = pop_id
generations = input(">>>Number of Generations<<<\n")
data['generations'] = generations
else:
#Learning
runs = input(">>>Number of Runs<<<\n")
data['runs'] = runs
time = input(">>>Duration of Simulation in Seconds<<<\n")
data['time'] = time*1000
interval = input(">>>Duration of Interval in Milliseconds<<<\n")
data['interval'] = interval
return data
if __name__ == '__main__':
data = get_simulation_details()
arena = arena.arena(data['arena'])
if data['mode'] == 'evolution':
# Evolution
population, num_individuals = ev.load_population(data['population'])
average_fitness, average_connectivity, best_of_generation = [], [], []
elite = [0, 0]
results.set_results_path(data['init'], data['model'], data['arena'],
data['population'])
print results.path
for gen in range(data['generations']):
# Create a separate folder for each generation results
results.create_generation_folder(gen)
print 'generation: %d' % (gen + 1)
generation_log = []
for i in range(num_individuals):
print i
individual = population[i]
simData1 = simulate_evolution(individual, arena,
data['time']/data['interval'],
data['interval'])
simData2 = simulate_evolution(individual, arena,
data['time']/data['interval'],
data['interval'])
fitness = np.mean([simData1['fitness'], simData2['fitness']])
print 'fitness: %f %f %f' % (simData1['fitness'],
simData2['fitness'], fitness)
connectivity = ev.get_connectivity(population[i])
generation_log.append((individual, fitness, connectivity,
simData1, simData2, i))
average_fitness.append(np.mean([j[1] for j in generation_log]))
average_connectivity.append(np.mean([j[2] for j in generation_log]))
print 'Average Fitness: %f\n' % average_fitness[gen]
top_performers = ev.get_top_performers(generation_log)
best_of_generation.append(top_performers[0])
update_elite()
results.save_generation_results(top_performers[0], average_fitness,
average_connectivity, gen)
population = ev.evolve_new_generation(top_performers)
results.save_fitness(average_fitness,
[best_of_generation[i][1] for i in range(len(best_of_generation))])
else:
# Learning
results.set_results_path(data['init'], data['model'], data['arena'],
0)
fitness, rewards, weights = [], [], []
simtime = 0
fitness.append(0)
rewards.append(0)
nrns, nrns_sd, rctrs, rctrs_sd, pop_spikes = \
network.create_learning_network(data['model'])
for i in range(50):
weights.append(learning.get_weights(rctrs, nrns))
simdata, rt, nt, pt, col = simulate_learning(nrns, rctrs, nrns_sd,
rctrs_sd, arena)
fitness.append(simdata['fitness'])
reward = learning.get_reward(rewards[-1], fitness[-1],
simdata['traj'][-1][0], simdata['traj'][-1][1])
rewards.append(reward)
delta_w_rec, delta_w_nrn = learning.get_weight_changes(reward,
simdata['rctr_nrn_trace'][-1], simdata['nrn_nrn_trace'][-1])
learning.update_weights(delta_w_rec, delta_w_nrn, nrns, rctrs)
results.save_rl_results(simdata, pop_spikes, i)