-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathjg.py
54 lines (39 loc) · 1.33 KB
/
jg.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
import numpy as np
import cv2
video_capture = cv2.VideoCapture(0)
video_capture.set(3, 160)
video_capture.set(4, 120)
while(True):
# Capture the frames
ret, crop_img = video_capture.read()
# Crop the image
#crop_img = frame[60:120, 0:160]
# Convert to grayscale
gray = cv2.cvtColor(crop_img, cv2.COLOR_BGR2GRAY)
# Gaussian blur
blur = cv2.GaussianBlur(gray,(5,5),0)
# Color thresholding
ret,thresh = cv2.threshold(blur,60,255,cv2.THRESH_BINARY_INV)
# Find the contours of the frame
_,contours,hierarchy = cv2.findContours(thresh.copy(), 1, cv2.CHAIN_APPROX_NONE)
# Find the biggest contour (if detected)
if len(contours) > 0:
c = max(contours, key=cv2.contourArea)
M = cv2.moments(c)
cx = int(M['m10']/M['m00'])
cy = int(M['m01']/M['m00'])
cv2.line(crop_img,(cx,0),(cx,720),(255,0,0),1)
cv2.line(crop_img,(0,cy),(1280,cy),(255,0,0),1)
cv2.drawContours(crop_img, contours, -1, (0,255,0), 1)
if cx >= 120:
print "Turn Left!"
if cx < 120 and cx > 50:
print "On Track!"
if cx <= 50:
print "Turn Right"
else:
print "I don't see the line"
#Display the resulting frame
cv2.imshow('frame',crop_img)
if cv2.waitKey(1) & 0xFF == ord('q'):
break