Skip to content

Commit c8f09f0

Browse files
affeldt-aistzstone1
authored andcommitted
typos
1 parent 651a2f9 commit c8f09f0

File tree

1 file changed

+21
-21
lines changed

1 file changed

+21
-21
lines changed

theories/topology.v

Lines changed: 21 additions & 21 deletions
Original file line numberDiff line numberDiff line change
@@ -117,12 +117,12 @@ Require Import reals signed.
117117
(* predicates on natural numbers that are *)
118118
(* eventually true. *)
119119
(* separates_points_from_closed f == For a closed set U and point x outside *)
120-
(* some member of the family `f` sends *)
121-
(* f_i(x) outside (closure (f_i@` U)). *)
122-
(* used together with `join_product` *)
123-
(* join_product f == The function (x i => f i x). When the *)
120+
(* some member of the family f sends *)
121+
(* f_i(x) outside (closure (f_i @` U)). *)
122+
(* Used together with join_product. *)
123+
(* join_product f == The function (x => f ^~ x). When the *)
124124
(* family f separates points from closed *)
125-
(* sets, join_product is an embedding *)
125+
(* sets, join_product is an embedding. *)
126126
(* *)
127127
(* * Near notations and tactics: *)
128128
(* --> The purpose of the near notations and tactics is to make the *)
@@ -3326,7 +3326,7 @@ Qed.
33263326
Definition hausdorff_accessible : hausdorff_space T -> accessible_space.
33273327
Proof.
33283328
rewrite open_hausdorff => hsdfT => x y /hsdfT [[U V] [xU yV]] [/= ? ? /eqP].
3329-
rewrite setIC => /disjoints_subset VUc; exists U; repeat split => //.
3329+
rewrite setIC => /disjoints_subset VUc; exists U; repeat split => //.
33303330
by rewrite inE; apply: VUc; rewrite -inE.
33313331
Qed.
33323332

@@ -6678,21 +6678,20 @@ Qed.
66786678
End SubspaceWeak.
66796679

66806680
Definition separates_points_from_closed {I : Type} {T : topologicalType}
6681-
{U_ : I -> topologicalType} (f_ : forall i, (T -> U_ i)) :=
6681+
{U_ : I -> topologicalType} (f_ : forall i, T -> U_ i) :=
66826682
forall (U : set T) x,
66836683
closed U -> ~ U x -> exists i, ~ (closure (f_ i @` U)) (f_ i x).
66846684

6685-
(* A handy technique for emebdding a space T into a product. The key interface
6686-
is 'separates_points_from_closed', which guarantees that the topologies
6685+
(* A handy technique for embedding a space T into a product. The key interface
6686+
is 'separates_points_from_closed', which guarantees that the topologies
66876687
- T's native topology
66886688
- sup (weak f_i) - the sup of all the weak topologies of f_i
66896689
- weak (x => (f_1 x, f_2 x,...)) - the weak topology from the product space
66906690
are equivalent (the last equivalence seems to require accessible_space).
66916691
*)
66926692
Section product_embeddings.
6693-
Context {I : choiceType} {T : topologicalType}.
6694-
Context {U_ : I -> topologicalType}.
6695-
Variable (f_ : forall i, (T -> U_ i)).
6693+
Context {I : choiceType} {T : topologicalType} {U_ : I -> topologicalType}.
6694+
Variable (f_ : forall i, T -> U_ i).
66966695

66976696
Hypothesis sepf : separates_points_from_closed f_.
66986697
Hypothesis ctsf : forall i, continuous (f_ i).
@@ -6712,7 +6711,7 @@ move=> FF; split.
67126711
move/cvg_sup => wiFx U; rewrite /= nbhs_simpl nbhsE => [[B [[oB ?]]]].
67136712
move/filterS; apply; have [//|i nclfix] := @sepf _ x (open_closedC oB).
67146713
apply: (wiFx i); have /= -> := @nbhsE (weak_topologicalType (f_ i)) x.
6715-
exists (f_ i @^-1` (~` closure [set f_ i x | x in ~` B])); repeat split => //.
6714+
exists (f_ i @^-1` (~` closure [set f_ i x | x in ~` B])); split; [split=>//|].
67166715
apply: open_comp; last by rewrite ?openC; last apply: closed_closure.
67176716
by move=> + _; exact: weak_continuous.
67186717
rewrite closureC preimage_bigcup => z [V [oV]] VnB => /VnB.
@@ -6732,7 +6731,7 @@ rewrite predeqE => A; rewrite ?openE /interior.
67326731
by split => + z => /(_ z); rewrite weak_sep_nbhsE.
67336732
Qed.
67346733

6735-
Definition join_product (x : T) : PU := fun i => f_ i x.
6734+
Definition join_product (x : T) : PU := f_ ^~ x.
67366735

67376736
Lemma join_product_continuous : continuous join_product.
67386737
Proof.
@@ -6746,21 +6745,22 @@ apply: open_comp => // + _; rewrite /cvg_to => x U.
67466745
by rewrite nbhs_simpl /= -weak_sep_nbhsE; move: x U; exact: ctsf.
67476746
Qed.
67486747

6749-
Lemma join_product_open : forall (A : set T), open A ->
6750-
open ((join_product @` A) : set (subspace (join_product @` setT))).
6748+
Lemma join_product_open (A : set T) : open A ->
6749+
open ((join_product @` A) : set (subspace (range join_product))).
67516750
Proof.
6752-
move=> A oA; rewrite openE => y /= [x Ax] jxy.
6751+
move=> oA; rewrite openE => y /= [x Ax] jxy.
67536752
have [// | i nAfiy] := @sepf (~` A) x (open_closedC oA).
67546753
pose B := prod_topo_apply i @^-1` (~` closure (f_ i @` ~` A)).
6755-
apply: (@filterS _ _ _ ((join_product @` setT) `&` B)).
6754+
apply: (@filterS _ _ _ (range join_product `&` B)).
67566755
move=> z [[w ?]] wzE Bz; exists w => //.
67576756
move: Bz; rewrite /B -wzE closureC; case=> K [oK KsubA] /KsubA.
67586757
have -> : prod_topo_apply i (join_product w) = f_ i w by [].
67596758
by move=> /exists2P/forallNP/(_ w)/not_andP [] // /contrapT.
67606759
apply: open_nbhs_nbhs; split; last by rewrite -jxy.
6761-
apply: openI; first exact: open_subspaceT; apply: open_subspaceW.
6762-
apply: open_comp; first by move=> + _; exact: prod_topo_apply_continuous.
6763-
by exact/closed_openC/closed_closure.
6760+
apply: openI; first exact: open_subspaceT.
6761+
apply: open_subspaceW; apply: open_comp.
6762+
by move=> + _; exact: prod_topo_apply_continuous.
6763+
exact/closed_openC/closed_closure.
67646764
Qed.
67656765

67666766
Lemma join_product_inj : accessible_space T -> set_inj [set: T] join_product.

0 commit comments

Comments
 (0)