Skip to content
New issue

Have a question about this project? Sign up for a free GitHub account to open an issue and contact its maintainers and the community.

By clicking “Sign up for GitHub”, you agree to our terms of service and privacy statement. We’ll occasionally send you account related emails.

Already on GitHub? Sign in to your account

HELP!many issuea,but i flow your tips #37

Open
Aurora-Rong opened this issue Oct 7, 2021 · 1 comment
Open

HELP!many issuea,but i flow your tips #37

Aurora-Rong opened this issue Oct 7, 2021 · 1 comment

Comments

@Aurora-Rong
Copy link

$ bash scripts/run_detnas_coco_fpn_300M_search.sh


Setting OMP_NUM_THREADS environment variable for each process to be 1 in default, to avoid your system being overloaded, please further tune the variable for optimal performance in your application as needed.


Traceback (most recent call last):
File "tools/train_net.py", line 19, in
from maskrcnn_benchmark.data import make_data_loader
File "/home/mist/DetNAS-master/maskrcnn_benchmark/data/init.py", line 2, in
from .build import make_data_loader
File "/home/mist/DetNAS-master/maskrcnn_benchmark/data/build.py", line 11, in
from . import datasets as D
File "/home/mist/DetNAS-master/maskrcnn_benchmark/data/datasets/init.py", line 3, in
from .coco import COCODataset
File "/home/mist/DetNAS-master/maskrcnn_benchmark/data/datasets/coco.py", line 3, in
import torchvision
File "/mistgpu/miniconda/lib/python3.7/site-packages/torchvision/init.py", line 3, in
from torchvision import models
File "/mistgpu/miniconda/lib/python3.7/site-packages/torchvision/models/init.py", line 12, in
from . import detection
File "/mistgpu/miniconda/lib/python3.7/site-packages/torchvision/models/detection/init.py", line 1, in
from .faster_rcnn import *
File "/mistgpu/miniconda/lib/python3.7/site-packages/torchvision/models/detection/faster_rcnn.py", line 13, in
from .rpn import AnchorGenerator, RPNHead, RegionProposalNetwork
File "/mistgpu/miniconda/lib/python3.7/site-packages/torchvision/models/detection/rpn.py", line 11, in
from . import _utils as det_utils
File "/mistgpu/miniconda/lib/python3.7/site-packages/torchvision/models/detection/_utils.py", line 19, in
class BalancedPositiveNegativeSampler(object):
File "/mistgpu/miniconda/lib/python3.7/site-packages/torch/jit/init.py", line 1219, in script
_compile_and_register_class(obj, _rcb, qualified_name)
File "/mistgpu/miniconda/lib/python3.7/site-packages/torch/jit/init.py", line 1076, in _compile_and_register_class
_jit_script_class_compile(qualified_name, ast, rcb)
File "/mistgpu/miniconda/lib/python3.7/site-packages/torch/jit/_recursive.py", line 222, in try_compile_fn
return torch.jit.script(fn, _rcb=rcb)
File "/mistgpu/miniconda/lib/python3.7/site-packages/torch/jit/init.py", line 1226, in script
fn = torch._C._jit_script_compile(qualified_name, ast, _rcb, get_default_args(obj))
RuntimeError:
builtin cannot be used as a value:
at /mistgpu/miniconda/lib/python3.7/site-packages/torchvision/models/detection/_utils.py:14:56
def zeros_like(tensor, dtype):
# type: (Tensor, int) -> Tensor
return torch.zeros_like(tensor, dtype=dtype, layout=tensor.layout,
~~~~~~~~~~~~~ <--- HERE
device=tensor.device, pin_memory=tensor.is_pinned())
'zeros_like' is being compiled since it was called from 'torch.torchvision.models.detection._utils.BalancedPositiveNegativeSampler.call'
at /mistgpu/miniconda/lib/python3.7/site-packages/torchvision/models/detection/_utils.py:72:12

        # randomly select positive and negative examples
        perm1 = torch.randperm(positive.numel(), device=positive.device)[:num_pos]
        perm2 = torch.randperm(negative.numel(), device=negative.device)[:num_neg]

        pos_idx_per_image = positive[perm1]
        neg_idx_per_image = negative[perm2]

        # create binary mask from indices
        pos_idx_per_image_mask = zeros_like(
        ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~...  <--- HERE
            matched_idxs_per_image, dtype=torch.uint8
        )
        neg_idx_per_image_mask = zeros_like(
            matched_idxs_per_image, dtype=torch.uint8
        )

        pos_idx_per_image_mask[pos_idx_per_image] = torch.tensor(1, dtype=torch.uint8)
        neg_idx_per_image_mask[neg_idx_per_image] = torch.tensor(1, dtype=torch.uint8)

Traceback (most recent call last):
File "tools/train_net.py", line 19, in
from maskrcnn_benchmark.data import make_data_loader
File "/home/mist/DetNAS-master/maskrcnn_benchmark/data/init.py", line 2, in
from .build import make_data_loader
File "/home/mist/DetNAS-master/maskrcnn_benchmark/data/build.py", line 11, in
from . import datasets as D
File "/home/mist/DetNAS-master/maskrcnn_benchmark/data/datasets/init.py", line 3, in
from .coco import COCODataset
File "/home/mist/DetNAS-master/maskrcnn_benchmark/data/datasets/coco.py", line 3, in
import torchvision
File "/mistgpu/miniconda/lib/python3.7/site-packages/torchvision/init.py", line 3, in
from torchvision import models
File "/mistgpu/miniconda/lib/python3.7/site-packages/torchvision/models/init.py", line 12, in
from . import detection
File "/mistgpu/miniconda/lib/python3.7/site-packages/torchvision/models/detection/init.py", line 1, in
from .faster_rcnn import *
File "/mistgpu/miniconda/lib/python3.7/site-packages/torchvision/models/detection/faster_rcnn.py", line 13, in
from .rpn import AnchorGenerator, RPNHead, RegionProposalNetwork
File "/mistgpu/miniconda/lib/python3.7/site-packages/torchvision/models/detection/rpn.py", line 11, in
from . import _utils as det_utils
File "/mistgpu/miniconda/lib/python3.7/site-packages/torchvision/models/detection/_utils.py", line 19, in
class BalancedPositiveNegativeSampler(object):
File "/mistgpu/miniconda/lib/python3.7/site-packages/torch/jit/init.py", line 1219, in script
_compile_and_register_class(obj, _rcb, qualified_name)
File "/mistgpu/miniconda/lib/python3.7/site-packages/torch/jit/init.py", line 1076, in _compile_and_register_class
_jit_script_class_compile(qualified_name, ast, rcb)
File "/mistgpu/miniconda/lib/python3.7/site-packages/torch/jit/_recursive.py", line 222, in try_compile_fn
return torch.jit.script(fn, _rcb=rcb)
File "/mistgpu/miniconda/lib/python3.7/site-packages/torch/jit/init.py", line 1226, in script
fn = torch._C._jit_script_compile(qualified_name, ast, _rcb, get_default_args(obj))
RuntimeError:
builtin cannot be used as a value:
at /mistgpu/miniconda/lib/python3.7/site-packages/torchvision/models/detection/_utils.py:14:56
def zeros_like(tensor, dtype):
# type: (Tensor, int) -> Tensor
return torch.zeros_like(tensor, dtype=dtype, layout=tensor.layout,
~~~~~~~~~~~~~ <--- HERE
device=tensor.device, pin_memory=tensor.is_pinned())
'zeros_like' is being compiled since it was called from 'torch.torchvision.models.detection._utils.BalancedPositiveNegativeSampler.call'
at /mistgpu/miniconda/lib/python3.7/site-packages/torchvision/models/detection/_utils.py:72:12

        # randomly select positive and negative examples
        perm1 = torch.randperm(positive.numel(), device=positive.device)[:num_pos]
        perm2 = torch.randperm(negative.numel(), device=negative.device)[:num_neg]

        pos_idx_per_image = positive[perm1]
        neg_idx_per_image = negative[perm2]

        # create binary mask from indices
        pos_idx_per_image_mask = zeros_like(
        ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~...  <--- HERE
            matched_idxs_per_image, dtype=torch.uint8
        )
        neg_idx_per_image_mask = zeros_like(
            matched_idxs_per_image, dtype=torch.uint8
        )

        pos_idx_per_image_mask[pos_idx_per_image] = torch.tensor(1, dtype=torch.uint8)
        neg_idx_per_image_mask[neg_idx_per_image] = torch.tensor(1, dtype=torch.uint8)

Traceback (most recent call last):
File "tools/train_net.py", line 19, in

from maskrcnn_benchmark.data import make_data_loader

File "/home/mist/DetNAS-master/maskrcnn_benchmark/data/init.py", line 2, in
from .build import make_data_loader
File "/home/mist/DetNAS-master/maskrcnn_benchmark/data/build.py", line 11, in
from . import datasets as D
File "/home/mist/DetNAS-master/maskrcnn_benchmark/data/datasets/init.py", line 3, in
from .coco import COCODataset
File "/home/mist/DetNAS-master/maskrcnn_benchmark/data/datasets/coco.py", line 3, in
import torchvision
File "/mistgpu/miniconda/lib/python3.7/site-packages/torchvision/init.py", line 3, in
from torchvision import models
File "/mistgpu/miniconda/lib/python3.7/site-packages/torchvision/models/init.py", line 12, in
from . import detection
File "/mistgpu/miniconda/lib/python3.7/site-packages/torchvision/models/detection/init.py", line 1, in
from .faster_rcnn import *
File "/mistgpu/miniconda/lib/python3.7/site-packages/torchvision/models/detection/faster_rcnn.py", line 13, in
from .rpn import AnchorGenerator, RPNHead, RegionProposalNetwork
File "/mistgpu/miniconda/lib/python3.7/site-packages/torchvision/models/detection/rpn.py", line 11, in
from . import _utils as det_utils
File "/mistgpu/miniconda/lib/python3.7/site-packages/torchvision/models/detection/_utils.py", line 19, in
class BalancedPositiveNegativeSampler(object):
File "/mistgpu/miniconda/lib/python3.7/site-packages/torch/jit/init.py", line 1219, in script
Traceback (most recent call last):
File "tools/train_net.py", line 19, in
from maskrcnn_benchmark.data import make_data_loader
File "/home/mist/DetNAS-master/maskrcnn_benchmark/data/init.py", line 2, in
from .build import make_data_loader
File "/home/mist/DetNAS-master/maskrcnn_benchmark/data/build.py", line 11, in
from . import datasets as D
File "/home/mist/DetNAS-master/maskrcnn_benchmark/data/datasets/init.py", line 3, in
_compile_and_register_class(obj, _rcb, qualified_name)
File "/mistgpu/miniconda/lib/python3.7/site-packages/torch/jit/init.py", line 1076, in _compile_and_register_class
from .coco import COCODataset
File "/home/mist/DetNAS-master/maskrcnn_benchmark/data/datasets/coco.py", line 3, in
import torchvision
File "/mistgpu/miniconda/lib/python3.7/site-packages/torchvision/init.py", line 3, in
from torchvision import models
File "/mistgpu/miniconda/lib/python3.7/site-packages/torchvision/models/init.py", line 12, in
from . import detection
File "/mistgpu/miniconda/lib/python3.7/site-packages/torchvision/models/detection/init.py", line 1, in
from .faster_rcnn import *
File "/mistgpu/miniconda/lib/python3.7/site-packages/torchvision/models/detection/faster_rcnn.py", line 13, in
_jit_script_class_compile(qualified_name, ast, rcb)
File "/mistgpu/miniconda/lib/python3.7/site-packages/torch/jit/_recursive.py", line 222, in try_compile_fn
from .rpn import AnchorGenerator, RPNHead, RegionProposalNetwork
File "/mistgpu/miniconda/lib/python3.7/site-packages/torchvision/models/detection/rpn.py", line 11, in
return torch.jit.script(fn, _rcb=rcb)
from . import _utils as det_utils
File "/mistgpu/miniconda/lib/python3.7/site-packages/torchvision/models/detection/_utils.py", line 19, in
File "/mistgpu/miniconda/lib/python3.7/site-packages/torch/jit/init.py", line 1226, in script
class BalancedPositiveNegativeSampler(object):
File "/mistgpu/miniconda/lib/python3.7/site-packages/torch/jit/init.py", line 1219, in script
fn = torch._C._jit_script_compile(qualified_name, ast, _rcb, get_default_args(obj))
RuntimeError:
builtin cannot be used as a value:
at /mistgpu/miniconda/lib/python3.7/site-packages/torchvision/models/detection/_utils.py:14:56
def zeros_like(tensor, dtype):
# type: (Tensor, int) -> Tensor
return torch.zeros_like(tensor, dtype=dtype, layout=tensor.layout,
~~~~~~~~~~~~~ <--- HERE
device=tensor.device, pin_memory=tensor.is_pinned())
'zeros_like' is being compiled since it was called from 'torch.torchvision.models.detection._utils.BalancedPositiveNegativeSampler.call'
at /mistgpu/miniconda/lib/python3.7/site-packages/torchvision/models/detection/_utils.py:72:12

        # randomly select positive and negative examples
        perm1 = torch.randperm(positive.numel(), device=positive.device)[:num_pos]
        perm2 = torch.randperm(negative.numel(), device=negative.device)[:num_neg]

        pos_idx_per_image = positive[perm1]
        neg_idx_per_image = negative[perm2]

        # create binary mask from indices
        pos_idx_per_image_mask = zeros_like(
        ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~...  <--- HERE
            matched_idxs_per_image, dtype=torch.uint8
        )
        neg_idx_per_image_mask = zeros_like(
            matched_idxs_per_image, dtype=torch.uint8
        )

        pos_idx_per_image_mask[pos_idx_per_image] = torch.tensor(1, dtype=torch.uint8)
        neg_idx_per_image_mask[neg_idx_per_image] = torch.tensor(1, dtype=torch.uint8)

_compile_and_register_class(obj, _rcb, qualified_name)

File "/mistgpu/miniconda/lib/python3.7/site-packages/torch/jit/init.py", line 1076, in _compile_and_register_class
_jit_script_class_compile(qualified_name, ast, rcb)
File "/mistgpu/miniconda/lib/python3.7/site-packages/torch/jit/_recursive.py", line 222, in try_compile_fn
return torch.jit.script(fn, _rcb=rcb)
File "/mistgpu/miniconda/lib/python3.7/site-packages/torch/jit/init.py", line 1226, in script
fn = torch._C._jit_script_compile(qualified_name, ast, _rcb, get_default_args(obj))
RuntimeError:
builtin cannot be used as a value:
at /mistgpu/miniconda/lib/python3.7/site-packages/torchvision/models/detection/_utils.py:14:56
def zeros_like(tensor, dtype):
# type: (Tensor, int) -> Tensor
return torch.zeros_like(tensor, dtype=dtype, layout=tensor.layout,
~~~~~~~~~~~~~ <--- HERE
device=tensor.device, pin_memory=tensor.is_pinned())
'zeros_like' is being compiled since it was called from 'torch.torchvision.models.detection._utils.BalancedPositiveNegativeSampler.call'
at /mistgpu/miniconda/lib/python3.7/site-packages/torchvision/models/detection/_utils.py:72:12

        # randomly select positive and negative examples
        perm1 = torch.randperm(positive.numel(), device=positive.device)[:num_pos]
        perm2 = torch.randperm(negative.numel(), device=negative.device)[:num_neg]

        pos_idx_per_image = positive[perm1]
        neg_idx_per_image = negative[perm2]

        # create binary mask from indices
        pos_idx_per_image_mask = zeros_like(
        ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~...  <--- HERE
            matched_idxs_per_image, dtype=torch.uint8
        )
        neg_idx_per_image_mask = zeros_like(
            matched_idxs_per_image, dtype=torch.uint8
        )

        pos_idx_per_image_mask[pos_idx_per_image] = torch.tensor(1, dtype=torch.uint8)
        neg_idx_per_image_mask[neg_idx_per_image] = torch.tensor(1, dtype=torch.uint8)

Traceback (most recent call last):
File "tools/train_net.py", line 19, in
from maskrcnn_benchmark.data import make_data_loader
File "/home/mist/DetNAS-master/maskrcnn_benchmark/data/init.py", line 2, in
from .build import make_data_loader
File "/home/mist/DetNAS-master/maskrcnn_benchmark/data/build.py", line 11, in
from . import datasets as D
File "/home/mist/DetNAS-master/maskrcnn_benchmark/data/datasets/init.py", line 3, in
from .coco import COCODataset
File "/home/mist/DetNAS-master/maskrcnn_benchmark/data/datasets/coco.py", line 3, in
import torchvision
File "/mistgpu/miniconda/lib/python3.7/site-packages/torchvision/init.py", line 3, in
from torchvision import models
File "/mistgpu/miniconda/lib/python3.7/site-packages/torchvision/models/init.py", line 12, in
from . import detection
File "/mistgpu/miniconda/lib/python3.7/site-packages/torchvision/models/detection/init.py", line 1, in
from .faster_rcnn import *
File "/mistgpu/miniconda/lib/python3.7/site-packages/torchvision/models/detection/faster_rcnn.py", line 13, in
from .rpn import AnchorGenerator, RPNHead, RegionProposalNetwork
File "/mistgpu/miniconda/lib/python3.7/site-packages/torchvision/models/detection/rpn.py", line 11, in
from . import _utils as det_utils
File "/mistgpu/miniconda/lib/python3.7/site-packages/torchvision/models/detection/_utils.py", line 19, in
class BalancedPositiveNegativeSampler(object):
File "/mistgpu/miniconda/lib/python3.7/site-packages/torch/jit/init.py", line 1219, in script
Traceback (most recent call last):
Traceback (most recent call last):
File "tools/train_net.py", line 19, in
_compile_and_register_class(obj, _rcb, qualified_name)
File "/mistgpu/miniconda/lib/python3.7/site-packages/torch/jit/init.py", line 1076, in _compile_and_register_class
Traceback (most recent call last):
File "tools/train_net.py", line 19, in
File "tools/train_net.py", line 19, in
from maskrcnn_benchmark.data import make_data_loader
File "/home/mist/DetNAS-master/maskrcnn_benchmark/data/init.py", line 2, in
from maskrcnn_benchmark.data import make_data_loader
File "/home/mist/DetNAS-master/maskrcnn_benchmark/data/init.py", line 2, in
from maskrcnn_benchmark.data import make_data_loader
File "/home/mist/DetNAS-master/maskrcnn_benchmark/data/init.py", line 2, in
from .build import make_data_loader
File "/home/mist/DetNAS-master/maskrcnn_benchmark/data/build.py", line 11, in
from .build import make_data_loader
File "/home/mist/DetNAS-master/maskrcnn_benchmark/data/build.py", line 11, in
from . import datasets as D
File "/home/mist/DetNAS-master/maskrcnn_benchmark/data/datasets/init.py", line 3, in
from . import datasets as D
File "/home/mist/DetNAS-master/maskrcnn_benchmark/data/datasets/init.py", line 3, in
_jit_script_class_compile(qualified_name, ast, rcb)
from .coco import COCODataset
File "/home/mist/DetNAS-master/maskrcnn_benchmark/data/datasets/coco.py", line 3, in
File "/mistgpu/miniconda/lib/python3.7/site-packages/torch/jit/_recursive.py", line 222, in try_compile_fn
from .coco import COCODataset
File "/home/mist/DetNAS-master/maskrcnn_benchmark/data/datasets/coco.py", line 3, in
from .build import make_data_loader
import torchvision
File "/home/mist/DetNAS-master/maskrcnn_benchmark/data/build.py", line 11, in
File "/mistgpu/miniconda/lib/python3.7/site-packages/torchvision/init.py", line 3, in
import torchvision
File "/mistgpu/miniconda/lib/python3.7/site-packages/torchvision/init.py", line 3, in
from torchvision import models
File "/mistgpu/miniconda/lib/python3.7/site-packages/torchvision/models/init.py", line 12, in
from . import datasets as D
File "/home/mist/DetNAS-master/maskrcnn_benchmark/data/datasets/init.py", line 3, in
from torchvision import models
from . import detection
File "/mistgpu/miniconda/lib/python3.7/site-packages/torchvision/models/init.py", line 12, in
File "/mistgpu/miniconda/lib/python3.7/site-packages/torchvision/models/detection/init.py", line 1, in
from .coco import COCODataset
from .faster_rcnn import *from . import detection

File "/mistgpu/miniconda/lib/python3.7/site-packages/torchvision/models/detection/faster_rcnn.py", line 13, in
File "/home/mist/DetNAS-master/maskrcnn_benchmark/data/datasets/coco.py", line 3, in
File "/mistgpu/miniconda/lib/python3.7/site-packages/torchvision/models/detection/init.py", line 1, in
return torch.jit.script(fn, _rcb=rcb)
File "/mistgpu/miniconda/lib/python3.7/site-packages/torch/jit/init.py", line 1226, in script
from .rpn import AnchorGenerator, RPNHead, RegionProposalNetwork
from .faster_rcnn import * File "/mistgpu/miniconda/lib/python3.7/site-packages/torchvision/models/detection/rpn.py", line 11, in

import torchvision  File "/mistgpu/miniconda/lib/python3.7/site-packages/torchvision/models/detection/faster_rcnn.py", line 13, in <module>

File "/mistgpu/miniconda/lib/python3.7/site-packages/torchvision/init.py", line 3, in
from . import _utils as det_utils
File "/mistgpu/miniconda/lib/python3.7/site-packages/torchvision/models/detection/_utils.py", line 19, in
from .rpn import AnchorGenerator, RPNHead, RegionProposalNetworkfrom torchvision import models

File "/mistgpu/miniconda/lib/python3.7/site-packages/torchvision/models/init.py", line 12, in
File "/mistgpu/miniconda/lib/python3.7/site-packages/torchvision/models/detection/rpn.py", line 11, in
class BalancedPositiveNegativeSampler(object):
File "/mistgpu/miniconda/lib/python3.7/site-packages/torch/jit/init.py", line 1219, in script
from . import detectionfrom . import _utils as det_utils

File "/mistgpu/miniconda/lib/python3.7/site-packages/torchvision/models/detection/init.py", line 1, in
File "/mistgpu/miniconda/lib/python3.7/site-packages/torchvision/models/detection/_utils.py", line 19, in
class BalancedPositiveNegativeSampler(object):
from .faster_rcnn import * File "/mistgpu/miniconda/lib/python3.7/site-packages/torch/jit/init.py", line 1219, in script

File "/mistgpu/miniconda/lib/python3.7/site-packages/torchvision/models/detection/faster_rcnn.py", line 13, in
from .rpn import AnchorGenerator, RPNHead, RegionProposalNetwork
File "/mistgpu/miniconda/lib/python3.7/site-packages/torchvision/models/detection/rpn.py", line 11, in
from . import _utils as det_utils
File "/mistgpu/miniconda/lib/python3.7/site-packages/torchvision/models/detection/_utils.py", line 19, in
fn = torch._C._jit_script_compile(qualified_name, ast, _rcb, get_default_args(obj))
RuntimeError_compile_and_register_class(obj, _rcb, qualified_name):

builtin cannot be used as a value:
at /mistgpu/miniconda/lib/python3.7/site-packages/torchvision/models/detection/_utils.py:14:56
def zeros_like(tensor, dtype):
# type: (Tensor, int) -> Tensor
return torch.zeros_like(tensor, dtype=dtype, layout=tensor.layout,
~~~~~~~~~~~~~ <--- HERE
device=tensor.device, pin_memory=tensor.is_pinned())
'zeros_like' is being compiled since it was called from 'torch.torchvision.models.detection._utils.BalancedPositiveNegativeSampler.call'
at /mistgpu/miniconda/lib/python3.7/site-packages/torchvision/models/detection/_utils.py:72:12

        # randomly select positive and negative examples
        perm1 = torch.randperm(positive.numel(), device=positive.device)[:num_pos]
        perm2 = torch.randperm(negative.numel(), device=negative.device)[:num_neg]

        pos_idx_per_image = positive[perm1]
        neg_idx_per_image = negative[perm2]

        # create binary mask from indices
        pos_idx_per_image_mask = zeros_like(
        ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~...  <--- HERE
            matched_idxs_per_image, dtype=torch.uint8
        )
        neg_idx_per_image_mask = zeros_like(
            matched_idxs_per_image, dtype=torch.uint8
        )

        pos_idx_per_image_mask[pos_idx_per_image] = torch.tensor(1, dtype=torch.uint8)
        neg_idx_per_image_mask[neg_idx_per_image] = torch.tensor(1, dtype=torch.uint8)

File "/mistgpu/miniconda/lib/python3.7/site-packages/torch/jit/init.py", line 1076, in _compile_and_register_class

class BalancedPositiveNegativeSampler(object):

File "/mistgpu/miniconda/lib/python3.7/site-packages/torch/jit/init.py", line 1219, in script
_compile_and_register_class(obj, _rcb, qualified_name)
File "/mistgpu/miniconda/lib/python3.7/site-packages/torch/jit/init.py", line 1076, in _compile_and_register_class
_jit_script_class_compile(qualified_name, ast, rcb)
File "/mistgpu/miniconda/lib/python3.7/site-packages/torch/jit/_recursive.py", line 222, in try_compile_fn
_compile_and_register_class(obj, _rcb, qualified_name)return torch.jit.script(fn, _rcb=rcb)
_jit_script_class_compile(qualified_name, ast, rcb)
File "/mistgpu/miniconda/lib/python3.7/site-packages/torch/jit/init.py", line 1226, in script
File "/mistgpu/miniconda/lib/python3.7/site-packages/torch/jit/_recursive.py", line 222, in try_compile_fn

File "/mistgpu/miniconda/lib/python3.7/site-packages/torch/jit/init.py", line 1076, in _compile_and_register_class
return torch.jit.script(fn, _rcb=rcb)
File "/mistgpu/miniconda/lib/python3.7/site-packages/torch/jit/init.py", line 1226, in script
fn = torch._C._jit_script_compile(qualified_name, ast, _rcb, get_default_args(obj))
RuntimeError: _jit_script_class_compile(qualified_name, ast, rcb)
builtin cannot be used as a value:
at /mistgpu/miniconda/lib/python3.7/site-packages/torchvision/models/detection/_utils.py:14:56
def zeros_like(tensor, dtype):
# type: (Tensor, int) -> Tensor
return torch.zeros_like(tensor, dtype=dtype, layout=tensor.layout,
~~~~~~~~~~~~~ <--- HERE
device=tensor.device, pin_memory=tensor.is_pinned())
'zeros_like' is being compiled since it was called from 'torch.torchvision.models.detection._utils.BalancedPositiveNegativeSampler.call'
at /mistgpu/miniconda/lib/python3.7/site-packages/torchvision/models/detection/_utils.py:72:12

        # randomly select positive and negative examples
        perm1 = torch.randperm(positive.numel(), device=positive.device)[:num_pos]
        perm2 = torch.randperm(negative.numel(), device=negative.device)[:num_neg]

        pos_idx_per_image = positive[perm1]
        neg_idx_per_image = negative[perm2]

        # create binary mask from indices
        pos_idx_per_image_mask = zeros_like(
        ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~...  <--- HERE
            matched_idxs_per_image, dtype=torch.uint8
        )
        neg_idx_per_image_mask = zeros_like(
            matched_idxs_per_image, dtype=torch.uint8
        )

        pos_idx_per_image_mask[pos_idx_per_image] = torch.tensor(1, dtype=torch.uint8)
        neg_idx_per_image_mask[neg_idx_per_image] = torch.tensor(1, dtype=torch.uint8)

File "/mistgpu/miniconda/lib/python3.7/site-packages/torch/jit/_recursive.py", line 222, in try_compile_fn
return torch.jit.script(fn, _rcb=rcb)
File "/mistgpu/miniconda/lib/python3.7/site-packages/torch/jit/init.py", line 1226, in script
fn = torch._C._jit_script_compile(qualified_name, ast, _rcb, get_default_args(obj))
RuntimeError:
builtin cannot be used as a value:
at /mistgpu/miniconda/lib/python3.7/site-packages/torchvision/models/detection/_utils.py:14:56
def zeros_like(tensor, dtype):
# type: (Tensor, int) -> Tensor
return torch.zeros_like(tensor, dtype=dtype, layout=tensor.layout,
~~~~~~~~~~~~~ <--- HERE
device=tensor.device, pin_memory=tensor.is_pinned())
'zeros_like' is being compiled since it was called from 'torch.torchvision.models.detection._utils.BalancedPositiveNegativeSampler.call'
at /mistgpu/miniconda/lib/python3.7/site-packages/torchvision/models/detection/_utils.py:72:12

        # randomly select positive and negative examples
        perm1 = torch.randperm(positive.numel(), device=positive.device)[:num_pos]
        perm2 = torch.randperm(negative.numel(), device=negative.device)[:num_neg]

        pos_idx_per_image = positive[perm1]
        neg_idx_per_image = negative[perm2]

        # create binary mask from indices
        pos_idx_per_image_mask = zeros_like(
        ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~...  <--- HERE
            matched_idxs_per_image, dtype=torch.uint8
        )
        neg_idx_per_image_mask = zeros_like(
            matched_idxs_per_image, dtype=torch.uint8
        )

        pos_idx_per_image_mask[pos_idx_per_image] = torch.tensor(1, dtype=torch.uint8)
        neg_idx_per_image_mask[neg_idx_per_image] = torch.tensor(1, dtype=torch.uint8)

fn = torch._C._jit_script_compile(qualified_name, ast, _rcb, get_default_args(obj))

RuntimeError:
builtin cannot be used as a value:
at /mistgpu/miniconda/lib/python3.7/site-packages/torchvision/models/detection/_utils.py:14:56
def zeros_like(tensor, dtype):
# type: (Tensor, int) -> Tensor
return torch.zeros_like(tensor, dtype=dtype, layout=tensor.layout,
~~~~~~~~~~~~~ <--- HERE
device=tensor.device, pin_memory=tensor.is_pinned())
'zeros_like' is being compiled since it was called from 'torch.torchvision.models.detection._utils.BalancedPositiveNegativeSampler.call'
at /mistgpu/miniconda/lib/python3.7/site-packages/torchvision/models/detection/_utils.py:72:12

        # randomly select positive and negative examples
        perm1 = torch.randperm(positive.numel(), device=positive.device)[:num_pos]
        perm2 = torch.randperm(negative.numel(), device=negative.device)[:num_neg]

        pos_idx_per_image = positive[perm1]
        neg_idx_per_image = negative[perm2]

        # create binary mask from indices
        pos_idx_per_image_mask = zeros_like(
        ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~...  <--- HERE
            matched_idxs_per_image, dtype=torch.uint8
        )
        neg_idx_per_image_mask = zeros_like(
            matched_idxs_per_image, dtype=torch.uint8
        )

        pos_idx_per_image_mask[pos_idx_per_image] = torch.tensor(1, dtype=torch.uint8)
        neg_idx_per_image_mask[neg_idx_per_image] = torch.tensor(1, dtype=torch.uint8)

Traceback (most recent call last):
File "/mistgpu/miniconda/lib/python3.7/runpy.py", line 193, in _run_module_as_main
"main", mod_spec)
File "/mistgpu/miniconda/lib/python3.7/runpy.py", line 85, in _run_code
exec(code, run_globals)
File "/mistgpu/miniconda/lib/python3.7/site-packages/torch/distributed/launch.py", line 253, in
main()
File "/mistgpu/miniconda/lib/python3.7/site-packages/torch/distributed/launch.py", line 249, in main
cmd=cmd)
subprocess.CalledProcessError: Command '['/mistgpu/miniconda/bin/python3', '-u', 'tools/train_net.py', '--local_rank=7', '--config-file', 'configs/e2e_faster_rcnn_DETNAS_COCO_FPN_300M_search.yaml', 'OUTPUT_DIR', 'models/DETNAS_COCO_FPN_300M_1x_search']' returned non-zero exit status 1.

@yukang2017
Copy link
Collaborator

Sorry for the late reply. I thinks this issue might comes from the installation. Would you please show your torch and torchvision version?

Sign up for free to join this conversation on GitHub. Already have an account? Sign in to comment
Labels
None yet
Projects
None yet
Development

No branches or pull requests

2 participants