-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathGaussianProbability_v2018.m
43 lines (40 loc) · 1.01 KB
/
GaussianProbability_v2018.m
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
function [pn1 pn1t pt n1min n1max]=GaussianProbability_v2018(matrix)
nbins=100;
[ntrials ns]=size(matrix);
r_1=mean(matrix,1);
var_1=var(matrix,1);
auxvar=min(var_1(find(var_1)));
r=mean(r_1);
variance=var(reshape(matrix,ntrials*ns,1));
n1min=r-3*sqrt(variance);
n1max=r+3*sqrt(variance);
dn1=1.0*(n1max-n1min)/nbins;
ns=ns-1;
pn1=zeros(nbins,1);
pn1t=zeros(nbins,ns);
pt=ones(1,ns);
for t=1:ns
x1=find(matrix(:,t));
total=sum(matrix(:,t));
r1=mean(matrix(:,t));
var1=var(matrix(:,t));
if length(x1)<=5 || r1== 0 || total <= 20
var1=auxvar;
end
n1=n1min;
i=1;
while n1 < n1max && i<=nbins
pn1t(i,t)=exp(-(n1-r1)*(n1-r1)/(2*var1))/sqrt(2*pi*var1);
n1=n1+dn1;
i=i+1;
end
end
pt=pt/ns;
suma=sum(pn1t,1);
for t=1:ns
pn1t(:,t)=pn1t(:,t)/suma(t);
end
pn1=sum(pn1t,2);
suma=sum(pn1);
pn1=pn1/suma;
end