-
Notifications
You must be signed in to change notification settings - Fork 254
Open
Description
Your code for gradient descent for multivariate regression is not vectorized.
Here's a vectorized implementation
function [theta, J_history] = gradientDescentMulti(X, y, theta, alpha, num_iters)
%GRADIENTDESCENTMULTI Performs gradient descent to learn theta
% theta = GRADIENTDESCENTMULTI(x, y, theta, alpha, num_iters) updates theta by
% taking num_iters gradient steps with learning rate alpha
% Initialize some useful values
m = length(y); % number of training examples
J_history = zeros(num_iters, 1);
sum1=zeros(size(X,2),1)
for iter = 1:num_iters
% ====================== YOUR CODE HERE ======================
% Instructions: Perform a single gradient step on the parameter vector
% theta.
%
% Hint: While debugging, it can be useful to print out the values
% of the cost function (computeCostMulti) and gradient here.
%
notsum=((X*theta)-y)
sum1=(alpha/m)*(sum(notsum.*X))
theta=theta-sum1'
% ============================================================
% Save the cost J in every iteration
J_history(iter) = computeCostMulti(X, y, theta);
end
end
Reactions are currently unavailable
Metadata
Metadata
Assignees
Labels
No labels