-
Notifications
You must be signed in to change notification settings - Fork 2
/
Copy pathmolgnn.py
282 lines (226 loc) · 11.6 KB
/
molgnn.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
import os.path as osp
import torch
from torch import Tensor
import torch.nn.functional as F
from torch.nn import Parameter
from torch_geometric.nn import MessagePassing
from torch_geometric.utils import remove_self_loops, add_self_loops #, softmax
from torch_scatter import scatter
from torch_geometric.nn.inits import zeros, glorot
from torch_geometric.typing import Adj, OptTensor, PairTensor
from torch_scatter import scatter_add
from torch_sparse import SparseTensor, fill_diag, matmul, mul
from torch_geometric.utils import add_remaining_self_loops
from torch_geometric.utils import softmax
from torch_geometric.graphgym.config import cfg
import torch.nn as nn
class MolGCNConv(MessagePassing):
r""" General MolGCN Layer
"""
def __init__(self, in_channels:int, out_channels:int, edge_dim:int, improved:bool=False, bias:bool=True,**kwards):
super(GCNConv, self).__init__(aggr='add', **kwards) # "Add" aggregation.
self.in_channels = in_channels
self.out_channels = out_channels
self.edge_dim = edge_dim
self.improved = improved
self.cached = cached
self.normalize = cfg.gnn.normalize_adj
self.weight = torch.nn.Parameter(torch.Tensor(in_channels, out_channels))
nn.init.xavier_uniform_(self.weight.data, gain=1.414)
self.edge_updated = torch.nn.Parameter(torch.Tensor(out_channels + edge_dim, out_channels)) # new property of GCN
nn.init.xavier_uniform_(self.edge_updated.data, gain=1.414)
if bias:
self.bias = torch.nn.Parameter(torch.Tensor(out_channels))
else:
self.register_parameter('bias', None)
self.reset_parameters()
def reset_parameters(self):
glorot(self.weight)
glorot(self.edge_updated) # added
zeros(self.bias)
self.cached_result = None
self.cached_num_edges = None
@staticmethod
def norm(edge_index, num_nodes, edge_weight=None, improved=False,
dtype=None):
if edge_weight is None:
edge_weight = torch.ones((edge_index.size(1), ), dtype=dtype,
device=edge_index.device)
fill_value = 1 if not improved else 2
edge_index, edge_weight = add_remaining_self_loops(
edge_index, edge_weight, fill_value, num_nodes)
row, col = edge_index
deg = scatter_add(edge_weight, row, dim=0, dim_size=num_nodes)
deg_inv_sqrt = deg.pow(-0.5)
deg_inv_sqrt[deg_inv_sqrt == float('inf')] = 0
return edge_index, deg_inv_sqrt[row] * edge_weight * deg_inv_sqrt[col]
def forward(self, x: Tensor, edge_index: Adj, edge_attr: Tensor,edge_weight=None):
'''
x : node feature matrix that has shape [N, in_channels]
edge_index : connectivity, Adj list in the edge index has shape [2, E]
edge_attr: N-dimensional edge feature matrix that has shape [ E x edge_dim]
'''
# Linearly transform node feature matrix (XΘ)
x = torch.matmul(x, self.weight)
if self.cached and self.cached_result is not None:
if edge_index.size(1) != self.cached_num_edges:
raise RuntimeError(
'Cached {} number of edges, but found {}. Please '
'disable the caching behavior of this layer by removing '
'the `cached=True` argument in its constructor.'.format(
self.cached_num_edges, edge_index.size(1)))
if not self.cached or self.cached_result is None:
self.cached_num_edges = edge_index.size(1)
if self.normalize:
edge_index, norm = self.norm(edge_index, x.size(self.node_dim),
edge_weight, self.improved,
x.dtype)
else:
norm = edge_weight
self.cached_result = edge_index, norm
edge_index, norm = self.cached_result
# Add node's self information (value=0) to edge_attr
self_loop_edges = torch.zeros(x.size(0), edge_attr.size(1)).to(edge_index.device) # N x edge_dim # new
edge_attr = torch.cat([edge_attr, self_loop_edges], dim=0) # new
# Start propagating messages
x_msg = self.propagate(x=x, edge_index=edge_index, edge_attr=edge_attr, norm=norm)
if cfg.gnn.self_msg == 'none':
return x_msg
elif cfg.gnn.self_msg == 'add':
return x_msg + x
elif cfg.gnn.self_msg == 'concat':
return x_msg + x_self
else:
raise ValueError('self_msg {} not defined'.format(
cfg.gnn.self_msg))
def message(self, x_j, edge_attr, norm):
# Normalize node features (concat edge_attr)
# x_j: neighborhood
if edge_attr is None:
return norm.view(-1, 1) * x_j if norm is not None else x_j
else:
x_j = torch.cat([x_j, edge_attr], dim=-1) # (N+E) x (emb(out)+edge_dim) # new
return norm.view(-1, 1) * x_j if norm is not None else x_j
def update(self, aggr_out): # 4.2 Return node embeddings
aggr_out = torch.mm(aggr_out, self.edge_updated) # new property added
'''
N x emb(out) = N x (emb(out)+edge_dim) @ (emb(out)+edge_dim) x emb(out)
For self Node 0(x_i): Based on the directed graph, Node 0 gets message from three edges and one self_loop
For neighborhood Node(x_j): only self_loop, since they do not get any message from others
'''
if self.bias is not None:
return aggr_out + self.bias
else:
return aggr_out
def __repr__(self):
return '{}({}, {},{})'.format(self.__class__.__name__, self.in_channels, self.out_channels,self.edge_dim)
class MolGATConv(MessagePassing):
def __init__(self,
in_channels:int,
out_channels:int,
edge_dim:int, # newly add
improved:bool=False,
heads: int =1,
negative_slope:float=0.2,
dropout:float=0.,
bias:bool =True, **kwargs):
super(MolGATConv, self).__init__(node_dim=0, aggr=cfg.gnn.agg, **kwargs) # "Add" aggregation.
self.in_channels = in_channels
self.out_channels = out_channels
self.edge_dim = edge_dim # newly add
self.heads = heads
self.negative_slope = negative_slope
self.dropout = dropout
self.improved = improved
self.normalize = cfg.gnn.normalize_adj
self.msg_direction = cfg.gnn.msg_direction
self.weight = Parameter(torch.Tensor(in_channels, heads * out_channels)) # emb(in) x [H*emb(out)]
nn.init.xavier_uniform_(self.weight.data, gain=1.414)
self.att = Parameter(torch.Tensor(1, heads, 2 * out_channels + edge_dim)) # 1 x H x [2*emb(out)+edge_dim] # new
nn.init.xavier_uniform_(self.att.data, gain=1.414)
if self.msg_direction == 'single':
self.edge_updated = Parameter(torch.Tensor(out_channels + edge_dim, out_channels)) # [emb(out)+edge_dim] x emb(out) # new
else:
self.edge_updated = Parameter(torch.Tensor(out_channels * 2 + edge_dim, out_channels))
if bias:
self.bias = Parameter(torch.Tensor(out_channels))
else:
self.register_parameter('bias', None)
self.reset_parameters()
def reset_parameters(self):
glorot(self.weight)
glorot(self.att)
glorot(self.edge_updated) # new
zeros(self.bias)
@staticmethod
def norm(edge_index, num_nodes, edge_weight=None, improved=False,
dtype=None):
if edge_weight is None:
edge_weight = torch.ones((edge_index.size(1), ), dtype=dtype,
device=edge_index.device)
fill_value = 1 if not improved else 2
edge_index, edge_weight = add_remaining_self_loops(
edge_index, edge_weight, fill_value, num_nodes)
row, col = edge_index
deg = scatter_add(edge_weight, row, dim=0, dim_size=num_nodes)
deg_inv_sqrt = deg.pow(-0.5)
deg_inv_sqrt[deg_inv_sqrt == float('inf')] = 0
return edge_index, deg_inv_sqrt[row] * edge_weight * deg_inv_sqrt[col]
def forward(self, x, edge_index, edge_attr,edge_weight=None, size=None):
# Add self-loops to the adjacency matrix (A' = A + I)
if size is None and torch.is_tensor(x):
edge_index, _ = remove_self_loops(edge_index) # 2 x E
edge_index, _ = add_self_loops(edge_index, num_nodes=x.size(0)) # 2 x (E+N)
if self.normalize:
edge_index, norm = self.norm(edge_index, x.size(self.node_dim),
edge_weight, self.improved,
x.dtype)
else:
norm = edge_weight
# Add node's self information (value=0) to edge_attr
self_loop_edges = torch.zeros(x.size(0), edge_attr.size(1)).to(edge_index.device) # N x edge_dim # new
edge_attr = torch.cat([edge_attr, self_loop_edges], dim=0) # (E+N) x edge_dim # new
# Linearly transform node feature matrix (XΘ)
x = torch.mm(x, self.weight).view(-1, self.heads, self.out_channels) # N x H x emb(out)
# Start propagating messages
x_msg = self.propagate(edge_index, x=x, edge_attr=edge_attr, size=size) # new
# 2 x (E+N), N x H x emb(out), (E+N) x edge_dim, None
return x_msg
def message(self, x_i, x_j, size_i, edge_index_i, edge_attr): # Compute normalization (concatenate + softmax)
'''
x_i, x_j: after linear x and expand edge (N+E) x H x emb(out)
= N x emb(in) @ emb(in) x [H*emb(out)] (+) E x H x emb(out)
edge_index_i: the col part of index [E+N]
size_i: number of nodes
edge_attr: edge values = (E+N) x edge_dim
'''
edge_attr = edge_attr.unsqueeze(1).repeat(1, self.heads, 1) # (E+N) x H x edge_dim # new
# (E+N) x H x (emb(out)+edge_dim) # new
if self.msg_direction == 'both':
x_j = torch.cat((x_i, x_j, edge_attr), dim=-1)
else:
x_j = torch.cat((x_j, edge_attr), dim=-1)
x_i = x_i.view(-1, self.heads, self.out_channels) # (E+N) x H x emb(out)
alpha = (torch.cat([x_i, x_j], dim=-1) * self.att).sum(dim=-1) # (E+N) x H
alpha = F.leaky_relu(alpha, self.negative_slope)
alpha = softmax(alpha, edge_index_i, num_nodes=size_i) # Computes a sparsely evaluated softmax
if self.training and self.dropout > 0:
alpha = F.dropout(alpha, p=self.dropout, training=True)
xj_msg = x_j* alpha.view(-1, self.heads, 1)
#msg = norm.view(-1, 1) * xj_msg if norm is not None else xj_msg
return xj_msg
def update(self, aggr_out):
'''
# Return node embeddings (average heads)
# for self Node 0(x_i): Based on the directed graph, Node 0 gets message from three edges and one self_loop
# for neighborhood Node(x_j): only self_loop, since they do not get any message from others
'''
aggr_out = aggr_out.mean(dim=1)
aggr_out = torch.mm(aggr_out, self.edge_updated)
if self.bias is not None:
aggr_out = aggr_out + self.bias
return aggr_out
def __repr__(self):
return '{}({}, {}, {}, heads={})'.format(self.__class__.__name__,
self.in_channels,
self.out_channels, self.edge_dim, self.heads)