|
| 1 | +#!/usr/bin/env python3 |
| 2 | +""" |
| 3 | +Simple example demonstrating SUMO-RL Environment usage. |
| 4 | +
|
| 5 | +This example shows how to: |
| 6 | +1. Connect to a SUMO traffic signal control environment |
| 7 | +2. Reset the environment |
| 8 | +3. Take actions (select traffic light phases) |
| 9 | +4. Process observations and rewards |
| 10 | +
|
| 11 | +Usage: |
| 12 | + # Option 1: Start the server manually |
| 13 | + python -m envs.sumo_rl_env.server.app |
| 14 | + # Then run: python examples/sumo_rl_simple.py |
| 15 | +
|
| 16 | + # Option 2: Use Docker |
| 17 | + docker run -p 8000:8000 sumo-rl-env:latest |
| 18 | + # Then run: python examples/sumo_rl_simple.py |
| 19 | +""" |
| 20 | + |
| 21 | +import numpy as np |
| 22 | + |
| 23 | +from envs.sumo_rl_env import SumoAction, SumoRLEnv |
| 24 | + |
| 25 | + |
| 26 | +def main(): |
| 27 | + """Run a simple SUMO traffic control episode.""" |
| 28 | + # Connect to the SUMO environment server |
| 29 | + print("Connecting to SUMO-RL environment...") |
| 30 | + env = SumoRLEnv(base_url="http://localhost:8000") |
| 31 | + |
| 32 | + try: |
| 33 | + # Reset the environment |
| 34 | + print("\nResetting environment...") |
| 35 | + result = env.reset() |
| 36 | + print(f"Observation shape: {result.observation.observation_shape}") |
| 37 | + print(f"Available actions: {result.observation.action_mask}") |
| 38 | + print(f"Number of green phases: {len(result.observation.action_mask)}") |
| 39 | + |
| 40 | + # Get initial state |
| 41 | + state = env.state() |
| 42 | + print(f"\nSimulation configuration:") |
| 43 | + print(f" Network: {state.net_file}") |
| 44 | + print(f" Duration: {state.num_seconds} seconds") |
| 45 | + print(f" Delta time: {state.delta_time} seconds") |
| 46 | + print(f" Reward function: {state.reward_fn}") |
| 47 | + |
| 48 | + # Run a few steps with random policy |
| 49 | + print("\nRunning traffic control with random policy...") |
| 50 | + episode_reward = 0 |
| 51 | + steps = 0 |
| 52 | + max_steps = 100 |
| 53 | + |
| 54 | + for step in range(max_steps): |
| 55 | + # Random policy: select random green phase |
| 56 | + action_id = np.random.choice(result.observation.action_mask) |
| 57 | + |
| 58 | + # Take action |
| 59 | + result = env.step(SumoAction(phase_id=action_id)) |
| 60 | + |
| 61 | + episode_reward += result.reward or 0 |
| 62 | + steps += 1 |
| 63 | + |
| 64 | + # Print progress every 10 steps |
| 65 | + if step % 10 == 0: |
| 66 | + state = env.state() |
| 67 | + print( |
| 68 | + f"Step {step:3d}: " |
| 69 | + f"phase={action_id}, " |
| 70 | + f"reward={result.reward:6.2f}, " |
| 71 | + f"vehicles={state.total_vehicles:3d}, " |
| 72 | + f"waiting={state.mean_waiting_time:6.2f}s, " |
| 73 | + f"speed={state.mean_speed:5.2f}m/s" |
| 74 | + ) |
| 75 | + |
| 76 | + if result.done: |
| 77 | + print(f"\nEpisode finished after {steps} steps!") |
| 78 | + break |
| 79 | + |
| 80 | + # Final statistics |
| 81 | + print(f"\n{'='*60}") |
| 82 | + print(f"Episode Summary:") |
| 83 | + print(f" Total steps: {steps}") |
| 84 | + print(f" Total reward: {episode_reward:.2f}") |
| 85 | + print(f" Average reward: {episode_reward/steps:.2f}") |
| 86 | + |
| 87 | + # Get final state |
| 88 | + state = env.state() |
| 89 | + print(f"\nFinal State:") |
| 90 | + print(f" Simulation time: {state.sim_time:.0f} seconds") |
| 91 | + print(f" Total vehicles: {state.total_vehicles}") |
| 92 | + print(f" Total waiting time: {state.total_waiting_time:.2f} seconds") |
| 93 | + print(f" Mean waiting time: {state.mean_waiting_time:.2f} seconds") |
| 94 | + print(f" Mean speed: {state.mean_speed:.2f} m/s") |
| 95 | + print(f"{'='*60}") |
| 96 | + |
| 97 | + finally: |
| 98 | + # Cleanup |
| 99 | + print("\nClosing environment...") |
| 100 | + env.close() |
| 101 | + print("Done!") |
| 102 | + |
| 103 | + |
| 104 | +if __name__ == "__main__": |
| 105 | + main() |
0 commit comments