-
Notifications
You must be signed in to change notification settings - Fork 233
/
Copy pathmini_vision_transformer.py
318 lines (254 loc) · 11.5 KB
/
mini_vision_transformer.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
import torch
import torch.nn as nn
from functools import partial
from timm.data import IMAGENET_DEFAULT_MEAN, IMAGENET_DEFAULT_STD
from timm.models.helpers import load_pretrained
from timm.models.layers import DropPath, to_2tuple, trunc_normal_
from timm.models.resnet import resnet26d, resnet50d
from timm.models.registry import register_model
from timm.models.vision_transformer import _cfg, default_cfgs,\
Mlp, PatchEmbed
try:
from timm.models.vision_transformer import HybridEmbed
except ImportError:
# for higher version of timm
from timm.models.vision_transformer_hybrid import HybridEmbed
from irpe import build_rpe
class RepeatedModuleList(nn.Module):
def __init__(self, instances, repeated_times):
super().__init__()
assert len(instances) == repeated_times
self.instances = nn.ModuleList(instances)
self.repeated_times = repeated_times
def forward(self, *args, **kwargs):
r = self._repeated_id
return self.instances[r](*args, **kwargs)
def __repr__(self):
msg = super().__repr__()
msg += f'(repeated_times={self.repeated_times})'
return msg
class MiniAttention(nn.Module):
'''
Attention with image relative position encoding
'''
def __init__(self, dim, num_heads=8, qkv_bias=False, qk_scale=None, attn_drop=0., proj_drop=0., rpe_config=None, repeated_times=1, use_transform=False):
super().__init__()
self.num_heads = num_heads
head_dim = dim // num_heads
# NOTE scale factor was wrong in my original version, can set manually to be compat with prev weights
self.scale = qk_scale or head_dim ** -0.5
self.qkv = nn.Linear(dim, dim * 3, bias=qkv_bias)
self.attn_drop = nn.Dropout(attn_drop)
self.proj = nn.Linear(dim, dim)
self.proj_drop = nn.Dropout(proj_drop)
# image relative position encoding
rpe_qkvs = []
for _ in range(repeated_times):
rpe_qkv = build_rpe(rpe_config,
head_dim=head_dim,
num_heads=num_heads)
rpe_qkvs.append(rpe_qkv)
assert len(rpe_qkvs) == repeated_times
assert all(len(r) == 3 for r in rpe_qkvs)
rpe_q, rpe_k, rpe_v = zip(*rpe_qkvs)
if rpe_q[0] is not None:
self.rpe_q = RepeatedModuleList(rpe_q, repeated_times)
else:
self.rpe_q = None
if rpe_k[0] is not None:
self.rpe_k = RepeatedModuleList(rpe_k, repeated_times)
else:
self.rpe_k = None
if rpe_v[0] is not None:
self.rpe_v = RepeatedModuleList(rpe_v, repeated_times)
else:
self.rpe_v = None
if use_transform:
transform_bias = False
self.conv_l = RepeatedModuleList([nn.Conv2d(num_heads, num_heads, kernel_size=1, bias=transform_bias) \
for _ in range(repeated_times)], repeated_times)
self.conv_w = RepeatedModuleList([nn.Conv2d(num_heads, num_heads, kernel_size=1, bias=transform_bias) \
for _ in range(repeated_times)], repeated_times)
else:
self.conv_l = self.conv_w = None
def forward(self, x):
B, N, C = x.shape
qkv = self.qkv(x).reshape(B, N, 3, self.num_heads, C // self.num_heads).permute(2, 0, 3, 1, 4)
q, k, v = qkv[0], qkv[1], qkv[2] # make torchscript happy (cannot use tensor as tuple)
q *= self.scale
attn = (q @ k.transpose(-2, -1))
# image relative position on keys
if self.rpe_k is not None:
attn += self.rpe_k(q)
# image relative position on queries
if self.rpe_q is not None:
attn += self.rpe_q(k * self.scale).transpose(2, 3)
if self.conv_l is not None:
attn = self.conv_l(attn)
attn = attn.softmax(dim=-1)
if self.conv_w is not None:
attn = self.conv_w(attn)
attn = self.attn_drop(attn)
out = attn @ v
# image relative position on values
if self.rpe_v is not None:
out += self.rpe_v(attn)
x = out.transpose(1, 2).reshape(B, N, C)
x = self.proj(x)
x = self.proj_drop(x)
return x
def init_weights(self):
def _init_weights(m):
if isinstance(m, nn.Conv2d):
trunc_normal_(m.weight, std=.02)
if isinstance(m, nn.Conv2d) and m.bias is not None:
nn.init.constant_(m.bias, 0)
for m in [self.conv_l, self.conv_w]:
if m is not None:
m.apply(_init_weights)
class MiniBlock(nn.Module):
def __init__(self, dim, num_heads, mlp_ratio=4., qkv_bias=False, qk_scale=None, drop=0., attn_drop=0.,
drop_paths=[0.], act_layer=nn.GELU, norm_layer=nn.LayerNorm, rpe_config=None, repeated_times=1, use_transform=False):
super().__init__()
assert len(drop_paths) == repeated_times
if repeated_times > 1:
self.norm1 = RepeatedModuleList([norm_layer(dim) for _ in range(repeated_times)], repeated_times)
self.norm2 = RepeatedModuleList([norm_layer(dim) for _ in range(repeated_times)], repeated_times)
self.attn = MiniAttention(
dim, num_heads=num_heads, qkv_bias=qkv_bias, qk_scale=qk_scale, attn_drop=attn_drop, proj_drop=drop, rpe_config=rpe_config,
repeated_times=repeated_times,
use_transform=use_transform)
# NOTE: drop path for stochastic depth, we shall see if this is better than dropout here
self.drop_paths = nn.ModuleList([DropPath(drop_path) if drop_path > 0. else nn.Identity() for drop_path in drop_paths])
mlp_hidden_dim = int(dim * mlp_ratio)
self.mlp = Mlp(in_features=dim, hidden_features=mlp_hidden_dim, act_layer=act_layer, drop=drop)
def forward(self, x):
drop_path = self.drop_paths[self._repeated_id]
x = x + drop_path(self.attn(self.norm1(x)))
x = x + drop_path(self.mlp(self.norm2(x)))
return x
class RepeatedMiniBlock(nn.Module):
def __init__(self, repeated_times, **kwargs):
super().__init__()
self.repeated_times = repeated_times
self.block = MiniBlock(repeated_times=repeated_times, **kwargs)
def set_repeated_times_fn(m):
m._repeated_times = repeated_times
self.apply(set_repeated_times_fn)
def forward(self, x):
for i, t in enumerate(range(self.repeated_times)):
def set_repeated_id(m):
m._repeated_id = i
self.block.apply(set_repeated_id)
x = self.block(x)
return x
def __repr__(self):
msg = super().__repr__()
msg += f'(repeated_times={self.repeated_times})'
return msg
class VisionTransformer(nn.Module):
""" Vision Transformer with support for patch or hybrid CNN input stage
and image relative position encoding
"""
def __init__(self, img_size=224, patch_size=16, in_chans=3, num_classes=1000, embed_dim=768, depth=12,
num_heads=12, mlp_ratio=4., qkv_bias=False, qk_scale=None, drop_rate=0., attn_drop_rate=0.,
drop_path_rate=0., hybrid_backbone=None, norm_layer=nn.LayerNorm, rpe_config=None,
use_cls_token=True,
repeated_times=1,
use_transform=False):
super().__init__()
self.num_classes = num_classes
self.num_features = self.embed_dim = embed_dim # num_features for consistency with other models
if hybrid_backbone is not None:
self.patch_embed = HybridEmbed(
hybrid_backbone, img_size=img_size, in_chans=in_chans, embed_dim=embed_dim)
else:
self.patch_embed = PatchEmbed(
img_size=img_size, patch_size=patch_size, in_chans=in_chans, embed_dim=embed_dim)
num_patches = self.patch_embed.num_patches
if use_cls_token:
self.cls_token = nn.Parameter(torch.zeros(1, 1, embed_dim))
else:
self.cls_token = None
pos_embed_len = 1 + num_patches if use_cls_token else num_patches
self.pos_embed = nn.Parameter(torch.zeros(1, pos_embed_len, embed_dim))
self.pos_drop = nn.Dropout(p=drop_rate)
dpr = [x.item() for x in torch.linspace(0, drop_path_rate, depth)] # stochastic depth decay rule
assert depth % repeated_times == 0
depth //= repeated_times
blocks = []
block_kwargs = dict(
dim=embed_dim, num_heads=num_heads, mlp_ratio=mlp_ratio, qkv_bias=qkv_bias, qk_scale=qk_scale,
drop=drop_rate, attn_drop=attn_drop_rate,
norm_layer=norm_layer, rpe_config=rpe_config,
use_transform=use_transform)
for i in range(depth):
if repeated_times > 1:
block = RepeatedMiniBlock(
repeated_times=repeated_times,
drop_paths=dpr[i * repeated_times : (i + 1) * repeated_times],
**block_kwargs,
)
else:
block = MiniBlock(drop_paths=[dpr[i]], **block_kwargs)
blocks.append(block)
self.blocks = nn.ModuleList(blocks)
self.norm = norm_layer(embed_dim)
# NOTE as per official impl, we could have a pre-logits representation dense layer + tanh here
#self.repr = nn.Linear(embed_dim, representation_size)
#self.repr_act = nn.Tanh()
# Classifier head
self.head = nn.Linear(embed_dim, num_classes) if num_classes > 0 else nn.Identity()
if not use_cls_token:
self.avgpool = nn.AdaptiveAvgPool1d(1)
else:
self.avgpool = None
trunc_normal_(self.pos_embed, std=.02)
if self.cls_token is not None:
trunc_normal_(self.cls_token, std=.02)
self.apply(self._init_weights)
self.apply(self._init_custom_weights)
def set_repeated_id(m):
m._repeated_id = 0
self.apply(set_repeated_id)
def _init_weights(self, m):
if isinstance(m, nn.Linear):
trunc_normal_(m.weight, std=.02)
if isinstance(m, nn.Linear) and m.bias is not None:
nn.init.constant_(m.bias, 0)
elif isinstance(m, nn.LayerNorm):
nn.init.constant_(m.bias, 0)
nn.init.constant_(m.weight, 1.0)
def _init_custom_weights(self, m):
if hasattr(m, 'init_weights'):
m.init_weights()
@torch.jit.ignore
def no_weight_decay(self):
return {'pos_embed', 'cls_token'}
def get_classifier(self):
return self.head
def reset_classifier(self, num_classes, global_pool=''):
self.num_classes = num_classes
self.head = nn.Linear(self.embed_dim, num_classes) if num_classes > 0 else nn.Identity()
def forward_features(self, x):
B = x.shape[0]
x = self.patch_embed(x)
if self.cls_token is not None:
cls_tokens = self.cls_token.expand(B, -1, -1) # stole cls_tokens impl from Phil Wang, thanks
x = torch.cat((cls_tokens, x), dim=1)
x = x + self.pos_embed
x = self.pos_drop(x)
for blk in self.blocks:
x = blk(x)
x = self.norm(x)
if self.cls_token is not None:
return x[:, 0]
else:
return x
def forward(self, x):
x = self.forward_features(x)
if self.avgpool is not None:
x = self.avgpool(x.transpose(1, 2)) # (B, C, 1)
x = torch.flatten(x, 1)
x = self.head(x)
return x