-
Notifications
You must be signed in to change notification settings - Fork 1
Open
Description
- https://learning.oreilly.com/library/view/deep-learning-with/9781617296864/
- https://wesmckinney.com/book/
- https://www.sciencedirect.com/science/article/pii/S0169207021001758
- https://mdsr-book.github.io/mdsr2e/
- https://arxiv.org/abs/2201.00650
- https://emilhvitfeldt.github.io/ISLR-tidymodels-labs/index.html
- https://www.edx.org/course/statistical-learning
- https://learndigital.withgoogle.com/digitalgarage/courses
- https://rviews.rstudio.com/2022/01/04/interview-with-oscar-baruffa/?mkt_tok=NzA5LU5YTi03MDYAAAGBzvKJqsNavF5SmkK9mcF_xo1ErCxU6QOc5e923noJ-gpH3I3DD2p9V_RN82zsdlehtRAwk_QIvjeBjfHfKOb90Srma7KBiVSGvyJaMclaQq4
- https://www.youtube.com/playlist?list=PLRKtJ4IpxJpDxl0NTvNYQWKCYzHNuy2xG
- https://the-algorithms.com/
- https://www.youtube.com/watch?v=zPG4NjIkCjc
- https://github.com/interpretml/interpret
- https://unit8co.github.io/darts/index.html
- https://www.azurefriday.com/
- https://www.microsoft.com/en-us/ai/ai-business-school?OCID=BIO_FY22Q3_oando_EAI_wb
- https://probability4datascience.com/index.html
- https://kdimensions.gumroad.com/l/visualdl
- https://www.fbpml.org/the-best-practices
- https://avehtari.github.io/ROS-Examples/
- https://www.kaggle.com/learn/time-series
- https://ml.berkeley.edu/blog/tag/crash-course
- https://cds.nyu.edu/deep-learning/
- https://www.rstudio.com/champion
- https://observablehq.com/collection/@observablehq/analyzing-time-series-data
- https://www.sixfiguredatascientist.com/book-agf883
- Spark Resources
- https://www.youtube.com/watch?v=iYie42M1ZyU
- https://books.ropensci.org/targets/
- https://www.youtube.com/watch?v=kAI67Sz92-s
- https://ericmjl.github.io/blog/2022/3/31/everything-gets-a-package-yes-everything-gets-a-package/
- https://ericmjl.github.io/data-science-bootstrap-notes/get-bootstrapped-on-your-data-science-projects/
- https://docs.python-guide.org/
- https://docs.python-guide.org/writing/structure/
- https://saturncloud.io/get-content/oreilly-report-leading-data-science-teams/?utm_source=O+Reilly+Newsletter&utm_medium=Leading+Data+Science+Teams&utm_campaign=Leading+Data+Science+Teams&mkt_tok=MTA3LUZNUy0wNzAAAAGDuS-7wQnH-b4w0NJgLTt01vJZRUohDCI700RQE8BF8q9ZJ-eIY3ZLV5BMfRiwR-aMfOXBkI0UMnMWfQmYSNSu8fSsm9-jc9vpY7iHWVBzkyXE
- https://engage.anomalo.com/free-oreilly-book-data-wrangling?utm_medium=email&utm_source=topic+optin&utm_campaign=awareness&utm_content=20220411+data+ai+nl&mkt_tok=MTA3LUZNUy0wNzAAAAGDuS-7wFWDNviGH4cOwycNJ6vFBg3-GFA_rwO0RY5LaAnvPqxOFnAcDKveg61n8pLC8bblPbl8V9IbOCbuwSPE8rw9DWvmvXUoMT075Mt-L_ob
- https://mlu-explain.github.io/
- https://pyscript.net/
- https://github.com/eugeneyan/applied-ml
- https://www.amazon.science/latest-news/the-history-of-amazons-forecasting-algorithm
- https://towardsdatascience.com/boost-your-time-series-forecasts-combining-gradient-boosting-models-with-prophet-features-8e738234ffd
- https://www.amazon.science/blog/improving-forecasting-by-learning-quantile-functions
- https://pypi.org/project/tidypandas/
- https://www.youtube.com/watch?app=desktop&v=XKNdXN-Jfmo
- https://arxiv.org/pdf/1811.12808.pdf
- https://www.rstudio.com/blog/speed-up-data-analytics-with-parquet-files/
- http://www.paulgraham.com/makersschedule.html
- https://ema.drwhy.ai/
- https://statquest.gumroad.com/l/wvtmc
- https://www.youtube.com/playlist?app=desktop&list=PLqYmG7hTraZCDxZ44o4p3N5Anz3lLRVZF
- https://www.econometrics-with-r.org/index.html
- https://evidentlyai.com/blog/tutorial-evidently-ml-monitoring-cs329s
- https://madewithml.com/
- https://www.youtube.com/watch?v=9QtL7m3YS9I
- https://www.youtube.com/watch?v=ilnNSrZ-qwY
- https://github.com/eugeneyan/applied-ml
- https://style.tidyverse.org/index.html
- https://pep8.org/
- https://devguide.ropensci.org/
- https://modeloriented.github.io/DrWhy/
- https://calmcode.io/
- https://github.com/Yimeng-Zhang/feature-engineering-and-feature-selection
- https://blog.samaltman.com/how-to-be-successful
- https://github.com/fugue-project/fugue
- https://github.com/Nixtla
- https://www.aidancooper.co.uk/a-non-technical-guide-to-interpreting-shap-analyses/?xgtab&
- https://www.freecodecamp.org/news/how-to-create-and-upload-your-first-python-package-to-pypi/
Metadata
Metadata
Assignees
Labels
No labels