diff --git a/README.md b/README.md
index 2e43e8a..5fc2050 100644
--- a/README.md
+++ b/README.md
@@ -32,14 +32,14 @@ AI systems by requiring less computation, fewer engineers, and less data,
to facilitate the giant market of edge AI and AIoT.
-
+
-
+
## Demo
-[](https://youtu.be/YvioBgtec4U)
+[](https://youtu.be/YvioBgtec4U)
## Related Projects
diff --git a/tinytl/README.md b/tinytl/README.md
index c1270f2..6206826 100644
--- a/tinytl/README.md
+++ b/tinytl/README.md
@@ -1,4 +1,4 @@
-# TinyTL: Reduce Activations, Not Trainable Parameters for Efficient On-Device Learning [[website]](https://hanlab.mit.edu/projects/tinyml/tinyTL/)
+# TinyTL: Reduce Activations, Not Trainable Parameters for Efficient On-Device Learning [[website]](https://hanlab18.mit.edu/projects/tinyml/tinyTL/)
```BibTex
@inproceedings{
@@ -13,27 +13,27 @@
## On-Device Learning, not Just Inference
-
+
## Activation is the Main Bottleneck, not Parameters
-
+
## Tiny Transfer Learning
-
+
## Transfer Learning Results
-
+
## Combining with Batch Size 1 Training
-
+
## Data Preparation
diff --git a/tinytl/dataset_setup_scripts/make_aircraft.py b/tinytl/dataset_setup_scripts/make_aircraft.py
index 8e635c8..3a2274b 100644
--- a/tinytl/dataset_setup_scripts/make_aircraft.py
+++ b/tinytl/dataset_setup_scripts/make_aircraft.py
@@ -64,8 +64,8 @@ def main():
shutil.rmtree(os.path.join(dataset_path, 'fgvc-aircraft-2013b'))
os.remove(os.path.join(dataset_path, 'fgvc-aircraft-2013b.tar.gz'))
- download_file('https://hanlab.mit.edu/tools/image_dataset_formats/aircraft/train.txt')
- download_file('https://hanlab.mit.edu/tools/image_dataset_formats/aircraft/val.txt')
+ download_file('https://hanlab18.mit.edu/tools/image_dataset_formats/aircraft/train.txt')
+ download_file('https://hanlab18.mit.edu/tools/image_dataset_formats/aircraft/val.txt')
test_data()
train_data()
diff --git a/tinytl/dataset_setup_scripts/make_food.py b/tinytl/dataset_setup_scripts/make_food.py
index 57ec430..1f21c15 100644
--- a/tinytl/dataset_setup_scripts/make_food.py
+++ b/tinytl/dataset_setup_scripts/make_food.py
@@ -63,8 +63,8 @@ def main():
shutil.rmtree(os.path.join(dataset_path, 'food-101'))
os.remove(os.path.join(dataset_path, 'food-101.tar.gz'))
- download_file('https://hanlab.mit.edu/tools/image_dataset_formats/food_101/train.txt')
- download_file('https://hanlab.mit.edu/tools/image_dataset_formats/food_101/val.txt')
+ download_file('https://hanlab18.mit.edu/tools/image_dataset_formats/food_101/train.txt')
+ download_file('https://hanlab18.mit.edu/tools/image_dataset_formats/food_101/val.txt')
test_data()
train_data()
diff --git a/tinytl/tinytl_fgvc_train.py b/tinytl/tinytl_fgvc_train.py
index 8fec71c..769dd0a 100644
--- a/tinytl/tinytl_fgvc_train.py
+++ b/tinytl/tinytl_fgvc_train.py
@@ -135,7 +135,7 @@
# replace bn layers with gn layers
replace_bn_with_gn(net, gn_channel_per_group=8)
# load pretrained model
- init_file = download_url('https://hanlab.mit.edu/projects/tinyml/tinyTL/files/'
+ init_file = download_url('https://hanlab18.mit.edu/projects/tinyml/tinyTL/files/'
'proxylessnas_mobile+lite_residual@imagenet@ws+gn', model_dir='~/.tinytl/')
net.load_state_dict(torch.load(init_file, map_location='cpu')['state_dict'])
net.classifier = LinearLayer(
@@ -147,7 +147,7 @@
net_config_path = os.path.join(args.net_path, 'net.config')
init_path = os.path.join(args.net_path, 'init')
else:
- base_url = 'https://hanlab.mit.edu/projects/tinyml/tinyTL/files/specialized/%s/' % args.dataset
+ base_url = 'https://hanlab18.mit.edu/projects/tinyml/tinyTL/files/specialized/%s/' % args.dataset
net_config_path = download_url(base_url + 'net.config',
model_dir='~/.tinytl/specialized/%s' % args.dataset)
init_path = download_url(base_url + 'init', model_dir='~/.tinytl/specialized/%s' % args.dataset)