-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathPCA.R
102 lines (86 loc) · 3.43 KB
/
PCA.R
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
library(readxl)
library(ggplot2)
library(dplyr)
library(grid)
library(gridExtra)
arkusz1 <- read_excel("data.xlsx", sheet = "Arkusz1")
arkusz2 <- read_excel("data.xlsx", sheet = "Arkusz2")
deskryptory <- arkusz1 %>%
select(where(is.numeric)) %>%
na.omit()
if ("No." %in% colnames(arkusz1)) {
deskryptory <- deskryptory %>% select(where(~ var(.) > 0))
} else {
stop("Brak kolumny 'No.' w arkuszu1.")
}
pca <- prcomp(deskryptory, scale. = TRUE)
pca_df <- as.data.frame(pca$x)
pca_df$No. <- arkusz1$No.[complete.cases(deskryptory)]
create_pca_plot <- function(merged_df, toxicity_col, title, legend_label) {
if (nrow(merged_df) > 0) {
vectors <- merged_df %>%
summarize(
PC1_sum = mean(PC1 * get(toxicity_col), na.rm = TRUE),
PC2_sum = mean(PC2 * get(toxicity_col), na.rm = TRUE)
)
if (!is.na(vectors$PC1_sum) & !is.na(vectors$PC2_sum)) {
vectors_df <- data.frame(
id = c(toxicity_col),
PC1 = c(-vectors$PC1_sum),
PC2 = c(-vectors$PC2_sum),
color = c("#FFA07A")
)
default_length <- 30
vectors_df <- vectors_df %>%
mutate(
PC1 = PC1 / sqrt(PC1^2 + PC2^2) * default_length,
PC2 = PC2 / sqrt(PC1^2 + PC2^2) * default_length
)
ggplot(merged_df, aes(x = PC1, y = PC2, color = get(toxicity_col))) +
geom_point(size = 3) + # Zwiększ rozmiar punktów
scale_color_gradient(low = "red", high = "green") +
labs(title = title,
x = "PC1",
y = "PC2",
color = legend_label) +
theme_minimal() +
geom_segment(data = vectors_df, aes(x = 0, y = 0, xend = PC1, yend = PC2),
color = "blue",
arrow = arrow(length = unit(0.3, "cm")), size = 1.2, inherit.aes = FALSE) +
theme(legend.position = "bottom") +
theme(legend.position = "bottom",
legend.title = element_text(size = 10),
legend.text = element_text(size = 8))
} else {
print(paste("Brak danych do narysowania strzałek dla", toxicity_col, "."))
return(NULL)
}
} else {
print(paste("Brak danych do analizy dla", toxicity_col, "."))
return(NULL)
}
}
create_and_plot <- function(toxicity_col, title, legend_label) {
if ("No." %in% colnames(arkusz2)) {
merged_df <- merge(pca_df, arkusz2[, c("No.", toxicity_col)], by = "No.")
create_pca_plot(merged_df, toxicity_col, title, legend_label)
} else {
stop("Brak kolumny 'No.' w arkuszu2.")
}
}
pca_daphnia_plot <- create_and_plot("Daphnia Magna", "Daphnia Magna Chronic Toxicity", "Daphnia Magna Toxicity [mg/L]")
pca_algae_plot <- create_and_plot("Algae", "Algae Chronic Toxicity", "Algae Toxicity [mg/L]")
pca_fish_plot <- create_and_plot("Fish", "Fish Acute Toxicity", "Fish Acute Toxicity [mg/L]")
pca_daphnia_ec_plot <- create_and_plot("Daphnia_EC", "Daphnia Magna Acute Toxicity", "Daphnia Magna Acute Toxicity [mg/L]")
pca_alga_ec_plot <- create_and_plot("Alga_EC", "Algae Acute Toxicity", "Algae Acute Toxicity [mg/L]")
grid.arrange(pca_daphnia_ec_plot, pca_alga_ec_plot, pca_fish_plot, pca_daphnia_plot, pca_algae_plot, nrow = 2)
ggsave("pca_plots.png",
arrangeGrob(
pca_daphnia_ec_plot,
pca_alga_ec_plot,
pca_fish_plot,
pca_daphnia_plot,
pca_algae_plot,
nrow = 2
),
width = 14, height = 10, dpi = 300, units = "in", bg = "transparent")